cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 105 results. Next

A044822 Positive integers having distinct base-11 run lengths.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 121, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 145, 157, 169, 181, 193, 205, 217, 229, 241, 242, 254, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 278, 290, 302, 314, 326
Offset: 1

Views

Author

Keywords

Examples

			270 = 226_11 is in the sequence as it has distinct run lengths of distinct digits (2, 1). - _David A. Corneth_, Jan 04 2021
		

Crossrefs

A044823 Positive integers having distinct base-12 run lengths.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 26, 39, 52, 65, 78, 91, 104, 117, 130, 143, 144, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 170, 183, 196, 209, 222, 235, 248, 261, 274, 287, 288, 301, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323
Offset: 1

Views

Author

Keywords

Examples

			314 = 222_12 is in the sequence as it has distinct run lengths of distinct digits (1). - _David A. Corneth_, Jan 04 2021
		

Crossrefs

A044824 Positive integers having distinct base-13 run lengths.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 28, 42, 56, 70, 84, 98, 112, 126, 140, 154, 168, 169, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 197, 211, 225, 239, 253, 267, 281, 295, 309, 323, 337, 338, 352, 364, 365, 366, 367, 368, 369, 370, 371
Offset: 1

Views

Author

Keywords

Examples

			338 = 200_13 is in the sequence as it has distinct run lengths of distinct digits (2, 1). - _David A. Corneth_, Jan 04 2021
		

Crossrefs

Programs

  • Mathematica
    Select[Range[400],Union[Tally[Length/@Split[IntegerDigits[#,13]]][[All,2]]] == {1}&] (* Harvey P. Dale, Sep 15 2020 *)

A044825 Positive integers having distinct base-14 run lengths.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, 195, 196, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 226, 241, 256, 271, 286, 301, 316, 331, 346, 361, 376, 391, 392, 407, 420, 421, 422, 423
Offset: 1

Views

Author

Keywords

Examples

			346 = 1AA_14 is in the sequence as it has distinct run lengths of distinct digits (1, 2). - _David A. Corneth_, Jan 04 2021
		

Crossrefs

A044826 Positive integers having distinct base-15 run lengths.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 225, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 417, 433, 449, 450, 466
Offset: 1

Views

Author

Keywords

Examples

			337 = 177_15 is in the sequence as it has distinct run lengths of distinct digits (1, 2). - _David A. Corneth_, Jan 04 2021
		

Crossrefs

A044827 Positive integers having distinct base-16 run lengths.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187, 204, 221, 238, 255, 256, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 290, 307, 324, 341, 358, 375, 392, 409, 426, 443, 460, 477
Offset: 1

Views

Author

Keywords

Examples

			324 = 144_16 is in the sequence as it has distinct run lengths of distinct digits (1, 2). - _David A. Corneth_, Jan 04 2021
		

Crossrefs

A384879 Numbers whose binary indices have all distinct lengths of maximal anti-runs (increasing by more than 1).

Original entry on oeis.org

1, 2, 4, 5, 8, 9, 10, 11, 13, 16, 17, 18, 19, 20, 21, 22, 25, 26, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 49, 50, 52, 53, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 80, 81, 82, 83, 84, 85, 86, 88, 97, 98, 100, 101, 104, 105, 106, 128, 129, 130
Offset: 1

Views

Author

Gus Wiseman, Jun 17 2025

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The binary indices of 813 are {1,3,4,6,9,10}, with maximal anti-runs ((1,3),(4,6,9),(10)), with lengths (2,3,1), so 813 is in the sequence.
The terms together with their binary expansions and binary indices begin:
    1:       1 ~ {1}
    2:      10 ~ {2}
    4:     100 ~ {3}
    5:     101 ~ {1,3}
    8:    1000 ~ {4}
    9:    1001 ~ {1,4}
   10:    1010 ~ {2,4}
   11:    1011 ~ {1,2,4}
   13:    1101 ~ {1,3,4}
   16:   10000 ~ {5}
   17:   10001 ~ {1,5}
   18:   10010 ~ {2,5}
   19:   10011 ~ {1,2,5}
   20:   10100 ~ {3,5}
   21:   10101 ~ {1,3,5}
   22:   10110 ~ {2,3,5}
   25:   11001 ~ {1,4,5}
   26:   11010 ~ {2,4,5}
		

Crossrefs

Subsets of this type are counted by A384177, for runs A384175 (complement A384176).
These are the indices of strict rows in A384877, see A384878, A245563, A245562, A246029.
A000120 counts binary indices.
A098859 counts Wilf partitions (distinct multiplicities), complement A336866.
A356606 counts strict partitions without a neighborless part, complement A356607.
A384890 counts maximal anti-runs in binary indices, runs A069010.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100],UnsameQ@@Length/@Split[bpe[#],#2!=#1+1&]&]

A384178 Number of strict integer partitions of n with all distinct lengths of maximal runs (decreasing by 1).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 3, 3, 4, 5, 6, 6, 8, 8, 10, 11, 13, 13, 16, 15, 19, 19, 23, 22, 26, 28, 31, 35, 39, 37, 47, 51, 52, 60, 65, 67, 78, 85, 86, 99, 108, 110, 127, 136, 138, 159, 170, 171, 196, 209, 213, 240, 257, 260, 292, 306, 313, 350, 371, 369, 417, 441
Offset: 0

Views

Author

Gus Wiseman, Jun 12 2025

Keywords

Examples

			The strict partition y = (9,7,6,5,2,1) has maximal runs ((9),(7,6,5),(2,1)), with lengths (1,3,2), so y is counted under a(30).
The a(1) = 1 through a(14) = 8 strict partitions (A-E = 10-14):
  1  2  3   4  5   6    7    8    9    A     B     C     D     E
        21     32  321  43   431  54   532   65    543   76    653
                        421  521  432  541   542   651   643   743
                                  621  721   632   732   652   761
                                       4321  821   921   832   932
                                             5321  6321  A21   B21
                                                         5431  5432
                                                         7321  8321
		

Crossrefs

For subsets instead of strict partitions we have A384175, complement A384176.
For anti-runs instead of runs we have A384880.
This is the strict version of A384884.
For equal instead of distinct lengths we have A384886.
A000041 counts integer partitions, strict A000009.
A047993 counts partitions with max part = length.
A098859 counts Wilf partitions (complement A336866), compositions A242882.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@Length/@Split[#,#1==#2+1&]&]],{n,0,30}]

A384889 Number of subsets of {1..n} with all equal lengths of maximal anti-runs (increasing by more than 1).

Original entry on oeis.org

1, 2, 4, 8, 14, 23, 37, 59, 93, 146, 230, 365, 584, 940, 1517, 2450, 3959, 6404, 10373, 16822, 27298, 44297, 71843, 116429, 188550, 305200, 493930, 799422, 1294108, 2095291, 3392736, 5493168, 8892148, 14390372, 23282110, 37660759, 60914308, 98528312, 159386110
Offset: 0

Views

Author

Gus Wiseman, Jun 18 2025

Keywords

Examples

			The subset {3,6,7,9,10,12} has maximal anti-runs ((3,6),(7,9),(10,12)), with lengths (2,2,2), so is counted under a(12).
The a(0) = 1 through a(4) = 14 subsets:
  {}  {}   {}     {}       {}
      {1}  {1}    {1}      {1}
           {2}    {2}      {2}
           {1,2}  {3}      {3}
                  {1,2}    {4}
                  {1,3}    {1,2}
                  {2,3}    {1,3}
                  {1,2,3}  {1,4}
                           {2,3}
                           {2,4}
                           {3,4}
                           {1,2,3}
                           {2,3,4}
                           {1,2,3,4}
		

Crossrefs

For runs instead of anti-runs we have A243815, distinct A384175, complement A384176.
For distinct instead or equal lengths we have A384177, ranks A384879.
For partitions instead of subsets we have A384888.
A034296 counts flat or gapless partitions, ranks A066311 or A073491.
A034839 counts subsets by number of maximal runs, for strict partitions A116674.
A047966 counts uniform partitions (equal multiplicities), ranks A072774.
A384893 counts subsets by number of maximal anti-runs, for partitions A268193, A384905.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],SameQ@@Length/@Split[#,#2!=#1+1&]&]],{n,0,10}]
  • PARI
    lista(n)=Vec(sum(i=1,(n+1)\2,1/(1-x^(2*i-1)/(1-x)^(i-1))-1,1-x+O(x*x^n))/(1-x)^2) \\ Christian Sievers, Jun 20 2025

Formula

G.f.: ( Sum_{i>=1} (1/(1-x^(2*i-1)/(1-x)^(i-1))-1) + 1-x ) / (1-x)^2. - Christian Sievers, Jun 21 2025

Extensions

a(21) and beyond from Christian Sievers, Jun 20 2025

A350952 The smallest number whose binary expansion has exactly n distinct runs.

Original entry on oeis.org

0, 1, 2, 11, 38, 311, 2254, 36079, 549790, 17593311, 549687102, 35179974591, 2225029922430, 284803830071167, 36240869367020798, 9277662557957324543, 2368116566113212692990, 1212475681849964898811391, 619877748107024946567312382, 634754814061593545284927880191
Offset: 0

Views

Author

Gus Wiseman, Feb 14 2022

Keywords

Comments

Positions of first appearances in A297770 (with offset 0).
The binary expansion of terms for n > 0 starts with 1, then floor(n/2) 0's, then alternates runs of increasing numbers of 1's, and decreasing numbers of 0's; see Python code. Thus, for n even, terms have n*(n/2+1)/2 binary digits, and for n odd, ((n+1) + (n-1)*((n-1)/2+1))/2 binary digits. - Michael S. Branicky, Feb 14 2022

Examples

			The terms and their binary expansions begin:
       0:                   ()
       1:                    1
       2:                   10
      11:                 1011
      38:               100110
     311:            100110111
    2254:         100011001110
   36079:     1000110011101111
  549790: 10000110001110011110
For example, 311 has binary expansion 100110111 with 5 distinct runs: 1, 00, 11, 0, 111.
		

Crossrefs

Runs in binary expansion are counted by A005811, distinct A297770.
The version for run-lengths instead of runs is A165933, for A165413.
Subset of A175413 (binary expansion has distinct runs), for lengths A044813.
The version for standard compositions is A351015.
A000120 counts binary weight.
A011782 counts integer compositions.
A242882 counts compositions with distinct multiplicities.
A318928 gives runs-resistance of binary expansion.
A334028 counts distinct parts in standard compositions.
A351014 counts distinct runs in standard compositions.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.

Programs

  • Mathematica
    q=Table[Length[Union[Split[If[n==0,{},IntegerDigits[n,2]]]]],{n,0,1000}];Table[Position[q,i][[1,1]]-1,{i,Union[q]}]
  • PARI
    a(n)={my(t=0); for(k=1, (n+1)\2, t=((t<Andrew Howroyd, Feb 15 2022
  • Python
    def a(n): # returns term by construction
        if n == 0: return 0
        q, r = divmod(n, 2)
        if r == 0:
            s = "".join("1"*i + "0"*(q-i+1) for i in range(1, q+1))
            assert len(s) == n*(n//2+1)//2
        else:
            s = "1" + "".join("0"*(q-i+2) + "1"*i for i in range(2, q+2))
            assert len(s) == ((n+1) + (n-1)*((n-1)//2+1))//2
        return int(s, 2)
    print([a(n) for n in range(20)]) # Michael S. Branicky, Feb 14 2022
    

Extensions

a(9)-a(19) from Michael S. Branicky, Feb 14 2022
Previous Showing 51-60 of 105 results. Next