A045853 Number of nonnegative solutions of x1^2 + x2^2 + ... + x12^2 = n.
1, 12, 66, 220, 507, 924, 1584, 2772, 4521, 6436, 8712, 12552, 18041, 23364, 28776, 37896, 50997, 62832, 72996, 89892, 115776, 139348, 156816, 185064, 231759, 274044, 300828, 343564, 418638, 487080, 528528, 592284, 707421, 814836, 874170, 959508, 1128338
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..2000 from T. D. Noe)
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n=0, 1, `if`(n<0 or k<1, 0, b(n, k-1)+add(b(n-j^2, k-1), j=1..isqrt(n)))) end: a:= b(n, 12): seq(a(n), n=0..40); # Alois P. Heinz, Feb 10 2021
-
Mathematica
CoefficientList[((1 + EllipticTheta[3, 0, q])/2)^12 + O[q]^40, q] (* Jean-François Alcover, Mar 01 2021 *)
-
Ruby
def mul(f_ary, b_ary, m) s1, s2 = f_ary.size, b_ary.size ary = Array.new(s1 + s2 - 1, 0) (0..s1 - 1).each{|i| (0..s2 - 1).each{|j| ary[i + j] += f_ary[i] * b_ary[j] } } ary[0..m] end def power(ary, n, m) if n == 0 a = Array.new(m + 1, 0) a[0] = 1 return a end k = power(ary, n >> 1, m) k = mul(k, k, m) return k if n & 1 == 0 return mul(k, ary, m) end def A(k, n) ary = Array.new(n + 1, 0) (0..Math.sqrt(n).to_i).each{|i| ary[i * i] = 1} power(ary, k, n) end p A(12, 100) # Seiichi Manyama, May 28 2017
Formula
Coefficient of q^n in (1 + q + q^4 + q^9 + q^16 + q^25 + q^36 + q^49 + q^64 + ...)^12.
G.f.: ((1 + theta_3(x)) / 2)^12. - Ilya Gutkovskiy, Feb 10 2021