cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A158248 Composite numbers with primitive root 10.

Original entry on oeis.org

49, 289, 343, 361, 529, 841, 2209, 2401, 3481, 3721, 4913, 6859, 9409, 11881, 12167, 12769, 16807, 17161, 22201, 24389, 27889, 32041, 32761, 37249, 49729, 52441, 54289, 66049, 69169, 72361, 83521, 97969
Offset: 1

Views

Author

Robert Hutchins, Mar 15 2009

Keywords

Comments

Previous name was: Numbers m whose reciprocal generates a repeating decimal fraction with period phi(m) and m/2 < phi(m) < m-1.
All terms are proper powers of full reptend primes (A001913).
This sequence does not contain every proper power of every term in A001913, for example, A001913 has 487 as its 26th term, but since 10 is not a primitive root of 487^2, 487^2 is not a term of this sequence. - Robert Hutchins, Oct 14 2021
A shorter description appears to be "Composite numbers with primitive root 10". - Arkadiusz Wesolowski, Jul 04 2012 (The two definitions certainly produce the same terms up through 83521. - N. J. A. Sloane, Jul 05 2012)

Crossrefs

Subsequence of A244623.
Subsequence of A167797.
Cf. A108989 (for base 2), A346316 (for base 6).

Programs

  • Maple
    select(n -> not isprime(n) and numtheory:-primroot(9,n) = 10,[$2..10000]);
    # N. J. A. Sloane, Jul 05 2012
  • Mathematica
    Select[Range[10^5], GCD[10, #] == 1 && #/2 < MultiplicativeOrder[10, #] < # - 1 &] (* Ray Chandler, Oct 17 2012 *)

Extensions

More terms from Robert Hutchins, Mar 21 2009
Entry revised by N. J. A. Sloane, Jul 05 2012
New name (using comment by Arkadiusz Wesolowski) from Joerg Arndt, Nov 22 2021

A251865 Irregular triangle read by rows in which row n lists the maximal-order elements (

Original entry on oeis.org

0, 1, 2, 3, 2, 3, 5, 3, 5, 3, 5, 7, 2, 5, 3, 7, 2, 6, 7, 8, 5, 7, 11, 2, 6, 7, 11, 3, 5, 2, 7, 8, 13, 3, 5, 11, 13, 3, 5, 6, 7, 10, 11, 12, 14, 5, 11, 2, 3, 10, 13, 14, 15, 3, 7, 13, 17, 2, 5, 10, 11, 17, 19, 7, 13, 17, 19, 5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 5, 7, 11, 13, 17, 19, 23, 2, 3, 8, 12, 13, 17, 22, 23
Offset: 1

Views

Author

Eric Chen, May 20 2015

Keywords

Comments

Conjecture: Triangle contains all nonsquare numbers infinitely many times.
The orders of the numbers in n-th row mod n are equal to A002322(n).
First and last terms of the n-th row are A111076(n) and A247176(n).
Length of the n-th row is A111725(n).
The n-th row is the same as A046147 for n with primitive roots.

Examples

			Read by rows:
n     maximal-order elements (<n) mod n
1     0
2     1
3     2
4     3
5     2, 3
6     5
7     3, 5
8     3, 5, 7
9     2, 5
10    3, 7
11    2, 6, 7, 8
12    5, 7, 11
13    2, 6, 7, 11
14    3, 5
15    2, 7, 8, 13
16    3, 5, 11, 13
17    3, 5, 6, 7, 10, 11, 12, 14
18    5, 11
19    2, 3, 10, 13, 14, 15
20    3, 7, 13, 17
etc.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Select[Range[0, n-1], GCD[#, n] == 1 && MultiplicativeOrder[#, n] == CarmichaelLambda[n]& ]; Table[a[n], {n, 1, 36}]
  • PARI
    c(n)=lcm((znstar(n))[2])
    a(n)=for(k=0,n-1,if(gcd(k, n)==1 && znorder(Mod(k,n))==c(n), print1(k, ",")))
    n=1; while(n<37, a(n); n++)
Previous Showing 11-12 of 12 results.