cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-64 of 64 results.

A114416 Records in 6-almost prime gaps ordered by merit.

Original entry on oeis.org

32, 48, 56, 84, 105, 140
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Examples

			Records defined in terms of A114406 and A046306:
n A114406(n) A114406(n)/log(A046306(n)).
1 32 32/log 64 = 17.7169498
2 48 48/log 96 = 24.2146479
3 16 16/log 144 = 7.41302726
4 56 56/log 160 = 25.4069653
5 8 8/log 216 = 3.42692589
6 16 16/log 224 = 6.80779215
7 84 84/log 240 = 35.2909853
8 12 12/log 324 = 4.77983862
...
22 105 105/log 624 = 37.5646032
		

Crossrefs

Formula

a(n) = records in A114406(n)/log(A046306(n)) = records in (A046306(n+1) - A046306(n))/log(A046306(n)).

Extensions

a(6) from Donovan Johnson, Feb 17 2010

A123118 Partial products of A101695.

Original entry on oeis.org

2, 12, 216, 8640, 933120, 209018880, 100329062400, 130026464870400, 349511137571635200, 1968446726803449446400, 22676506292775737622528000, 522466704985552994823045120000, 27820307107070725868337506549760000
Offset: 1

Views

Author

Jonathan Vos Post, Sep 28 2006

Keywords

Comments

The number of prime factors (with multiplicity) of a(n) is T(n) = A000217(n) = n*(n+1)/2.

Examples

			a(1) = 2 = prime(1).
a(2) = 12 = 2 * 6 = prime(1) * semiprime(2) = 2^2 * 3.
a(3) = 216 = 2 * 6 * 18 = prime(1) * semiprime(2) * 3-almostprime(3) = 2^3 * 3^3.
a(4) = 8640 = 2 * 6 * 18 * 40 = prime(1) * semiprime(2) * 3-almostprime(3) * 4-almostprime(4) = 2^6 * 3^3 * 5.
a(15) = 893179304874387947794472921245209518407680000 = 2 * 6 * 18 * 40 * 108 * 224 * 480 * 1296 * 2688 * 5632 * 11520 * 23040 * 53248 * 124416 * 258048 = 2^88 * 3^23 * 5^4 * 7^3 * 11 * 13.
		

Crossrefs

Formula

a(n) = Prod[i=1..n] i-th i-almost prime = Prod[i=1..n] A101695(i).

A321590 Smallest number m that is a product of exactly n primes and is such that m-1 and m+1 are products of exactly n-1 primes.

Original entry on oeis.org

4, 50, 189, 1863, 10449, 447849, 4449249, 5745249, 3606422049, 16554218751, 105265530369, 1957645712385
Offset: 2

Views

Author

Zak Seidov, Nov 13 2018

Keywords

Comments

From Jon E. Schoenfield, Nov 15 2018: (Start)
If a(11) is odd, it is 16554218751.
If a(12) is odd, it is 105265530369.
If a(13) is odd, it is 1957645712385. (End)
a(11), a(12), and a(13) are indeed odd. - Giovanni Resta, Jan 04 2019
10^13 < a(14) <= 240455334218751, a(15) <= 2992278212890624. - Giovanni Resta, Jan 06 2019

Examples

			For n = 3, 50 = 2*5*5, and the numbers before and after 50 are 49 = 7*7 and 51 = 3*17.
		

Crossrefs

Cf. A078840.
Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275(r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20).

Programs

  • Mathematica
    a[n_] := Module[{o={0,0,0}, k=1}, While[o!={n-1,n,n-1}, o=Rest[AppendTo[o,PrimeOmega[k]]]; k++]; k-2]; Array[a,7,2] (* Amiram Eldar, Nov 14 2018 *)
  • PARI
    {for(n=2,10,for(k=2^n,10^12,if(n==bigomega(k) &&
    n-1==bigomega(k-1) && n-1==bigomega(k+1),print1(k", ");break())))}

Extensions

a(10) from Jon E. Schoenfield, Nov 14 2018
a(11)-a(13) from Giovanni Resta, Jan 04 2019

A374231 a(n) is the minimum number of distinct numbers with exactly n prime factors (counted with multiplicity) whose sum of reciprocals exceeds 1.

Original entry on oeis.org

3, 13, 96, 1772, 108336, 35181993
Offset: 1

Views

Author

Amiram Eldar, Jul 01 2024

Keywords

Examples

			a(1) = 3 since Sum_{k=1..2} 1/prime(k) = 1/2 + 1/3 = 5/6 < 1 and Sum_{k=1..3} 1/prime(k) = 1/2 + 1/3 + 1/5 = 31/30 > 1.
a(2) = 13 since Sum_{k=1..12} 1/A001358(k) = 1/4 + 1/6 + 1/9 + 1/10 + 1/14 + 1/15 + 1/21 + 1/22 + 1/25 + 1/26 + 1/33 + 1/34 = 15271237/15315300 < 1 and Sum_{k=1..13} 1/A001358(k) = 1/4 + 1/6 + ... + 1/35 = 15708817/15315300 > 1.
		

Crossrefs

Programs

  • Mathematica
    next[p_, n_] := Module[{k = p + 1}, While[PrimeOmega[k] != n, k++]; k]; a[n_] := Module[{k = 0, sum = 0, p = 0}, While[sum <= 1, p = next[p, n]; sum += 1/p; k++]; k]; Array[a, 5]
  • PARI
    nextnum(p, n) = {my(k = p + 1); while(bigomega(k) != n, k++); k;}
    a(n) = {my(k = 0, sum = 0, p = 0); while(sum <= 1, p = nextnum(p, n); sum += 1/p; k++); k;}
Previous Showing 61-64 of 64 results.