cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 77 results. Next

A376864 4-brilliant numbers with distinct prime factors.

Original entry on oeis.org

210, 46189, 55913, 62491, 70499, 75361, 78793, 81719, 84227, 89947, 95381, 96577, 99671, 100529, 101959, 103037, 104533, 110143, 111397, 114257, 116831, 121693, 121771, 124729, 127699, 128557, 128843, 130169, 131461, 133331, 134849, 139403, 141427, 143429
Offset: 1

Views

Author

Paul Duckett, Oct 07 2024

Keywords

Examples

			210 = 2*3*5*7 is a term.
130169 = 13*17*19*31 is a term.
		

Crossrefs

Intersection of A046386 and A376704.

Programs

  • Python
    from sympy import factorint
    def ok(n):
        f = factorint(n)
        return len(f) == sum(f.values()) == 4 and len(set([len(str(p)) for p in f])) == 1
    print([k for k in range(144000) if ok(k)]) # Michael S. Branicky, Oct 08 2024
    
  • Python
    from math import prod
    from sympy import primerange
    from itertools import count, combinations, islice
    def bgen(d): # generator of terms that are products of d-digit primes
        primes, out = list(primerange(10**(d-1), 10**d)), set()
        for t in combinations(primes, 4): out.add(prod(t))
        yield from sorted(out)
    def agen(): # generator of terms
        for d in count(1): yield from bgen(d)
    print(list(islice(agen(), 34))) # Michael S. Branicky, Oct 08 2024

Extensions

Terms corrected by Michael S. Branicky, Oct 08 2024

A379762 Products of 4 distinct prime numbers (or tetraprimes) that are abundant.

Original entry on oeis.org

210, 330, 390, 462, 510, 546, 570, 690, 714, 770, 798, 858, 870, 910, 930, 966, 1110, 1122, 1190, 1218, 1230, 1254, 1290, 1302, 1326, 1330, 1410, 1430, 1482, 1518, 1554, 1590, 1610, 1722, 1770, 1794, 1806, 1830, 1870, 1914, 1938, 1974, 2002, 2010, 2030, 2046, 2090, 2130, 2170, 2190, 2210, 2226, 2262, 2346, 2370, 2418, 2442, 2470, 2478, 2490, 2530, 2562, 2590, 2622
Offset: 1

Views

Author

Massimo Kofler, Jan 09 2025

Keywords

Comments

This sequence is not 2*{A046389}. 2618 = 2*1309 is not in this sequence, while 1309 is in A046389.
Contains 6*p*q if p and q are distinct primes > 3. The first term not of this form is 770. - Robert Israel, Jan 09 2025
a(43) = 2002 is the only term coprime to 15. - Charles R Greathouse IV, Jan 13 2025

Examples

			210 is a term because 210=2*3*5*7 is the product of four distinct primes and it is smaller than the sum of its proper divisors 366.
1155 is not a term because 1155=3*5*7*11 is the product of four distinct primes and it is larger than the sum of its proper divisors 1149.
		

Crossrefs

Intersection of A005101 and A046386.

Programs

  • Maple
    filter:= proc(n) local F,t;
       F:= ifactors(n)[2];
       F[..,2] = [1,1,1,1] and mul(t[1]+1, t = F) > 2*n
    end proc:
    select(filter, [seq(i,i=2..3000, 4)]); # Robert Israel, Jan 09 2025
  • Mathematica
    q[n_] := Module[{f = FactorInteger[n]}, f[[;; , 2]] == {1, 1, 1, 1} && Times @@ (1 + 1/f[[;; , 1]]) > 2]; Select[Range[3000], q] (* Amiram Eldar, Jan 09 2025 *)
  • PARI
    list(lim)=my(v=List(select(k->k<=lim, [1430, 1870, 2002, 2090, 2210, 2470, 2530, 2990, 3190, 3230, 3410, 3770, 4030, 4070, 4510, 4730, 5170, 5830]))); forprime(p=5,sqrtint(lim\6), my(t=6*p); forprime(q=p+2,lim\t, listput(v,t*q))); forprime(p=11,lim\70,listput(v,70*p)); Set(v) \\ Charles R Greathouse IV, Jan 13 2025

Formula

a(n) == 2 (mod 4).
a(n) ~ (1/6)*n log n/log log n. - Charles R Greathouse IV, Jan 13 2025

A382208 Numbers k for which pi(bigomega(k)) = omega(k).

Original entry on oeis.org

1, 4, 9, 12, 18, 20, 24, 25, 28, 36, 40, 44, 45, 49, 50, 52, 54, 56, 63, 68, 75, 76, 88, 92, 98, 99, 100, 104, 116, 117, 120, 121, 124, 135, 136, 147, 148, 152, 153, 164, 168, 169, 171, 172, 175, 180, 184, 188, 189, 196, 207, 212, 225, 232, 236, 240, 242, 244, 245
Offset: 1

Views

Author

Felix Huber, Mar 30 2025

Keywords

Comments

Numbers k for which A000720(A001222(k)) = A001221(k).
Numbers k = p_1^e_1 * ... * p_j^e_j for which pi(Sum_{i=1..j} e_i) = j where pi = A000720.

Examples

			240 = 2^4*3*5 is in the sequence because pi(Omega(240)) = pi(6) = 3 = omega(240).
		

Crossrefs

Programs

  • Maple
    with(NumberTheory):
    A382208:=proc(n)
        option remember;
        local k;
        if n=1 then
            1
        else
            for k from procname(n-1)+1 do
                if pi(Omega(k))=Omega(k,distinct) then
                    return k
                fi
            od
        fi;
    end proc;
    seq(A382208(n),n=1..59);
    # second Maple program:
    q:= n-> (l-> is(numtheory[pi](add(i[2], i=l))=nops(l)))(ifactors(n)[2]):
    select(q, [$1..245])[];  # Alois P. Heinz, Apr 05 2025
  • Mathematica
    Select[Range[250], PrimePi[PrimeOmega[#]] == PrimeNu[#] &] (* Amiram Eldar, Apr 05 2025 *)
  • PARI
    isok(k) = primepi(bigomega(k)) == omega(k); \\ Michel Marcus, Apr 05 2025

Extensions

a(1) inserted by Michel Marcus, Apr 05 2025

A331669 List of distinct numbers that occur in A318366 (the Dirichlet convolution square of bigomega).

Original entry on oeis.org

0, 1, 2, 4, 8, 10, 12, 20, 24, 34, 35, 40, 48, 52, 56, 70, 72, 84, 95, 104, 112, 116, 120, 130, 156, 160, 164, 165, 168, 180, 189, 212, 220, 224, 238, 240, 258, 280, 284, 286, 300, 304, 322, 330, 344, 348, 352, 364, 380, 420, 438, 440, 455, 460, 464, 472, 477, 480
Offset: 1

Views

Author

Torlach Rush, Jan 23 2020

Keywords

Comments

There is a strong correlation between values of this function and values of other arithmetic functions. In other words, a(n) correlates to a single distinct value from one or more of the arithmetic functions.
Terms of this sequence select from the positive integers as follows:
A318366(k) = a(1), 1 followed by the primes (A008578).
A318366(k) = A008836(k) = A001221(k) = a(2), primes squared (A001248).
A318366(k) = A001221(k) = a(3), squarefree semiprimes (A006881).
A318366(k) = A000005(k) = a(4), primes cubed (A030078).
A318366(k) = a(5), a prime squared times a prime (A054753).
A318366(k) = a(6), primes to the fourth power (A030514).
A318366(k) = a(7), sphenic numbers (A007304).
A318366(k) = a(8), union of A050997 and A065036.
A318366(k) = a(9), squarefree semiprimes squared (A085986).
A318366(k) = a(10), product of four primes, three distinct (A085987).
A318366(k) = a(11), primes to the sixth power (A030516).
A318366(k) = a(12), product of prime to fourth power and a different prime (A178739).
A318366(k) = a(13), product of four distinct primes (A046386).
...

Examples

			0 is a term because the only divisors of a prime (p) are 1 and a prime itself and bigomega(1) * bigomega(p) + bigomega(p) * bigomega(1) = 0 * 1 + 1 * 0 = 0.
1 is a term because a prime squared gives bigomega(1) * bigomega(p^2) + bigomega(p) * bigomega(p) + bigomega(p^2) * bigomega(1) = 0 * 2 + 1 * 1 + 2 * 0 = 1.
		

Crossrefs

Cf. also A101296.

Extensions

More terms, using A318366 extended b-file, from Michel Marcus, Jan 24 2020

A351867 Heptagonal numbers which are products of four distinct primes.

Original entry on oeis.org

3010, 4774, 10465, 14326, 20566, 28462, 54538, 59059, 59830, 66178, 66994, 87142, 104755, 112042, 120670, 121771, 131905, 137710, 138886, 168610, 179158, 201214, 212722, 223054, 249166, 273406, 288490, 290191, 314530, 343546, 358534, 375778, 401401, 405418, 419635, 461605
Offset: 1

Views

Author

Massimo Kofler, Apr 12 2022

Keywords

Comments

A squarefree subsequence of heptagonal numbers.

Examples

			3010 = 2*5*7*43 = 35(5*35-3)/2.
4774 = 2*7*11*31 = 44(5*44-3)/2.
10465 = 5*7*13*23 = 65(5*65-3)/2.
14326 = 2*13*19*29 = 76(5*76-3)/2.
		

Crossrefs

Intersection of A000566 and A046386.

Programs

  • Python
    from itertools import count, islice
    from sympy import factorint
    def A351867_gen(): return filter(lambda k:sum((f := factorint(k)).values()) == 4 == len(f), (n*(5*n-3)//2 for n in count(1)))
    A351867_list = list(islice(A351867_gen(),20)) # Chai Wah Wu, Apr 14 2022

A351878 Products of four distinct primes between products of two primes.

Original entry on oeis.org

870, 1190, 1254, 1590, 1794, 1938, 2046, 2190, 2470, 2490, 2562, 2814, 2982, 3030, 3094, 3102, 3198, 3666, 3810, 4170, 4182, 4386, 4470, 4530, 4578, 4686, 4710, 5330, 5358, 5434, 5730, 5754, 5910, 5934, 5970, 6018, 6118, 6402, 6438, 6486, 6594
Offset: 1

Views

Author

Massimo Kofler, Mar 31 2022

Keywords

Examples

			   870 = 2*3*5*29   (between  869 = 11 * 79  and   871 = 13 * 67);
  1190 = 2*5*7*17   (between 1189 = 29 * 41  and  1191 =  3 * 397);
  5330 = 2*5*13*41  (between 5329 = 73 * 73  and  5331 =  3 * 1777).
		

Crossrefs

Subsequence of A046386.
Cf. A001358.

A354086 11-gonal numbers which are products of four distinct primes.

Original entry on oeis.org

4785, 8170, 11526, 14421, 27105, 30710, 38595, 59110, 60146, 77946, 94105, 107570, 118990, 120458, 121935, 132526, 140361, 141955, 156706, 158390, 161785, 181101, 199606, 203415, 213095, 215058, 217030, 221001, 243485, 249806, 267058, 287155, 298635, 303290
Offset: 1

Views

Author

Massimo Kofler, Jun 08 2022

Keywords

Comments

A squarefree subsequence of 11-gonal numbers, i.e., numbers of the form k*(9*k-7)/2.

Examples

			4785 = 33*(9*33-7)/2 = 3*5*11*29.
30710 = 83*(9*83-7)/2 = 2*5*37*83.
140361 = 177*(9*177-7)/2 = 3*13*59*61.
303290 = 260*(9*260-7)/2 = 2*5*13*2333.
		

Crossrefs

Intersection of A051682 and A046386.

Programs

  • Maple
    q:= n-> is(map(x-> x[2], ifactors(n)[2])=[1$4]):
    select(q, [n*(9*n-7)/2$n=1..300])[];  # Alois P. Heinz, Jun 15 2022
  • Mathematica
    Select[Table[n*(9*n - 7)/2, {n, 1, 300}], FactorInteger[#][[;; , 2]] == {1, 1, 1, 1} &] (* Amiram Eldar, Jun 08 2022 *)

A354447 Taxicab numbers (sums of 2 cubes in more than 1 way) which are products of four distinct primes.

Original entry on oeis.org

684019, 704977, 2691451, 3242197, 3375001, 4931101, 5318677, 5772403, 8872487, 10702783, 16983854, 20616463, 24897817, 41258737, 46343059, 60698521, 66469429, 69625969, 79692193, 89576767, 95731489, 96753187, 97867441, 116773741, 119793457, 126516061, 147187369
Offset: 1

Views

Author

Massimo Kofler, May 30 2022

Keywords

Comments

A squarefree subsequence of taxicab numbers.

Examples

			684019 =  51^3 +  82^3 =  64^3 +  75^3 =  7 * 19 *  37 *  139.
8872487 =  14^3 + 207^3 = 140^3 + 183^3 = 13 * 17 *  19 * 2113.
96753187 = 147^3 + 454^3 = 283^3 + 420^3 = 19 * 37 * 229 *  601.
		

Crossrefs

Intersection of A001235 and A046386.

Programs

  • Mathematica
    Select[Range[10^6], FactorInteger[#][[;; , 2]] == {1, 1, 1, 1} && Length @ PowersRepresentations[#, 2, 3] > 1 &] (* Amiram Eldar, May 30 2022 *)

A364766 Products k of 4 distinct primes (or tetraprimes) such that none of k-2, k-1, k+1 and k+2 is squarefree.

Original entry on oeis.org

3774, 6726, 10934, 11726, 12426, 13674, 15042, 16226, 17630, 17974, 18278, 18998, 21574, 23374, 23426, 24038, 27710, 27874, 28826, 32390, 34390, 35074, 35126, 37630, 37774, 38170, 38626, 41210, 41426, 46342, 46774, 46990, 47874, 50518, 50806, 51794, 53074, 53846
Offset: 1

Views

Author

Massimo Kofler, Aug 06 2023

Keywords

Examples

			3772 = 2^2 * 23 * 41, 3773 = 7^3 * 11, 3774 = 2 * 3 * 17 * 37, 3775 = 5^2 * 151, 3776 = 2^6 * 59, so 3774 is a term.
6724 = 2^2 * 41^2, 6725 = 5^2 * 269, 6726 = 2 * 3 * 19 * 59, 6727 = 7 * 31^2, 6728 = 2^3 * 29^2, so 6726 is a term.
		

Crossrefs

Cf. A013929, A046386. Subsequence of A364141.

Programs

  • Mathematica
    Select[Range[55000], FactorInteger[#][[;; , 2]] == {1, 1, 1, 1} && !AnyTrue[# + {-2, -1, 1, 2}, SquareFreeQ] &] (* Amiram Eldar, Aug 06 2023 *)

A367791 Lesser of 2 successive tetraprimes (k, k+4) sandwiching three consecutive not squarefree numbers.

Original entry on oeis.org

3770, 12122, 12426, 17574, 19158, 22074, 28574, 31506, 40922, 46322, 47382, 50930, 52854, 57174, 60378, 61586, 66174, 72474, 74222, 77231, 78774, 85074, 85526, 87954, 89090, 91322, 91374, 95226, 97622, 99582, 104210, 106674, 113734, 118374, 120786, 122822, 124674, 126870, 127673
Offset: 1

Views

Author

Massimo Kofler, Nov 30 2023

Keywords

Comments

Tetraprimes are the product of four distinct prime numbers (cf. A046386).

Examples

			3770 = 2*5*13*29, 3771 = 3^2*419, 3772 = 2^2*23*41, 3773 = 7^3*11, 3774 = 2*3*17*37, so 3770 is a term.
12122 = 2*11*19*29, 12123 = 3^3*449, 12124 = 2^2*7*433, 12125 = 5^3*97, 12126 = 2*3*43*47, so 12122 is a term.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[e == {1, 1, 1, 1}, 1, If[AnyTrue[e, # > 1 &], 2, 0]]]; Position[Partition[Array[f, 130000], 5, 1], {1, 2, 2, 2, 1}][[;; , 1]] (* Amiram Eldar, Nov 30 2023 *)
Previous Showing 61-70 of 77 results. Next