cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A265167 Number of n X 2 arrays containing 2 copies of 0..n-1 with no equal horizontal or vertical neighbors and new values introduced sequentially from 0.

Original entry on oeis.org

0, 1, 2, 21, 186, 2113, 27856, 422481, 7241480, 138478561, 2923183474, 67520866405, 1694065383154, 45878853274945, 1333966056696224, 41446945223914337, 1370476678395567376, 48051281596087884289
Offset: 1

Views

Author

R. H. Hardin, Dec 03 2015

Keywords

Comments

Column 2 of A265170.
a(n) is also the number of configurations of n indistinguishable pairs placed on the vertices of the ladder graph P_2 X P_n such that no such pair is joined by an edge; equivalently this is the number of "0-domino" configurations in the game of memory played on a 2 X n rectangular array, see [Young]. - Donovan Young, Oct 22 2018

Examples

			Some solutions for n=4
..0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1
..2..3....2..3....2..3....2..0....2..3....2..3....2..3....2..3....2..3....2..3
..0..1....3..2....0..2....1..3....0..1....3..0....3..1....1..2....3..2....0..2
..2..3....1..0....3..1....3..2....3..2....2..1....0..2....0..3....0..1....1..3
		

Crossrefs

Formula

a(n) = Sum_{k=0..n} (-1)^k*(2*n-2*k-1)!! * A046741(n,k) where and 0!! = (-1)!! = 1; proved by inclusion-exclusion, see [Young].

A102435 Triangle read by rows: T(n,k) is the number of k-matchings of the corona L'(n) of the ladder graph L(n)=P_2 X P_n. and the complete graph K(1); in other words, L'(n) is the graph constructed from L(n) by adding for each vertex v a new vertex v' and the edge vv'.

Original entry on oeis.org

1, 1, 3, 1, 1, 8, 16, 8, 1, 1, 13, 54, 87, 54, 13, 1, 1, 18, 117, 348, 501, 348, 117, 18, 1, 1, 23, 205, 914, 2210, 2966, 2210, 914, 205, 23, 1, 1, 28, 318, 1910, 6658, 13980, 17895, 13980, 6658, 1910, 318, 28, 1, 1, 33, 456, 3461, 15945, 46648, 88425, 109391, 88425, 46648, 15945, 3461, 456, 33, 1
Offset: 0

Views

Author

Emeric Deutsch, Jan 08 2005

Keywords

Comments

Row n contains 2n+1 terms. Row sums yield A102436 T(n,k)=T(n,2n-k). The number of k-matchings of the ladder graph L(n)=P_2 X P_n is given in A046741.

Examples

			T(2,2)=16 because in the graph L'(2) with vertex set {A,B,C,D,a,b,c,d} and edge set {AB,BC,CD,AD,Aa,Bb,Cc,Dd} we have sixteen 2-matchings. Indeed, each of the edges Aa,Bb,Cc,Dd can be matched with five edges and each of the edges AB,BC,CD,AD can be matched with three edges. Thus we have (4*5+4*3)/2=16 matchings.
Triangle begins:
1;
1,3,1;
1,8,16,8,1;
1,13,54,87,54,13,1;
		

Crossrefs

Programs

  • Maple
    P[0]:=1: P[1]:=1+3*t+t^2: P[2]:=1+8*t+16*t^2+8*t^3+t^4: for n from 3 to 8 do P[n]:=sort(expand((1+4*t+t^2)*P[n-1]+t*(1+t)^2*P[n-2]-t^3*P[n-3])) od: for n from 0 to 8 do seq(coeff(t*P[n],t^k),k=1..2*n+1) od; # yields sequence in triangular form

Formula

P[0]=1, P[1]=1+3t+t^2, P[2]=1+8t+16t^2+8t^3+t^4, P[n]=(1+4t+t^2)P[n-1]+t(1+t)^2*P[n-2]-t^3*P[n-3] for n>=3. G.f.= (1-tz)/[1-(1+4t+t^2)z-t(t+1)^2*z^2+t^3*z^3].

A123518 Number of dumbbells in all possible arrangements of dumbbells on a 2 X n rectangular array of compartments.

Original entry on oeis.org

1, 8, 38, 166, 671, 2602, 9792, 36068, 130697, 467556, 1655406, 5811290, 20255279, 70172502, 241839184, 829685064, 2835099649, 9653650752, 32768012102, 110913651342, 374469646511, 1261386990850, 4240037471152, 14225209349036
Offset: 1

Views

Author

Emeric Deutsch, Oct 16 2006

Keywords

Examples

			a(2)=8 because in a 2 X 2 array of compartments, numbered clockwise starting from the NW one, we have 7 (=A030186(2)) possible arrangements of dumbbells: [ ], [14], [23], [12], [34], [14,23] and [12,34] (ij indicates a dumbbell placed in the compartments i and j); these contain altogether 8 dumbbells.
		

Crossrefs

Programs

  • GAP
    a:=[1,8,38,166,671,2602];; for n in [7..30] do a[n]:=6*a[n-1] -7*a[n-2]-8*a[n-3]+5*a[n-4]+2*a[n-5]-a[n-6]; od; a; # G. C. Greubel, Oct 28 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( x*(1+2*x-3*x^2+2*x^3)/(1-3*x-x^2+x^3)^2 )); // G. C. Greubel, Oct 28 2019
    
  • Maple
    G:=z*(1+2*z-3*z^2+2*z^3)/(1-3*z-z^2+z^3)^2: Gser:=series(G,z=0,30): seq(coeff(Gser,z,n),n=1..27);
  • Mathematica
    LinearRecurrence[{6,-7,-8,5,2,-1}, {1,8,38,166,671,2602}, 30] (* G. C. Greubel, Oct 28 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec(x*(1+2*x-3*x^2+2*x^3)/(1-3*x-x^2+x^3)^2) \\ G. C. Greubel, Oct 28 2019
    
  • Sage
    def A123518_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1+2*x-3*x^2+2*x^3)/(1-3*x-x^2+x^3)^2 ).list()
    a=A123518_list(30); a[1:] # G. C. Greubel, Oct 28 2019
    

Formula

a(n) = Sum_{k=0..n} k*A046741(n,k).
G.f.: x*(1 + 2*x - 3*x^2 + 2*x^3)/(1 - 3*x - x^2 + x^3)^2.

A325754 Triangle read by rows giving the number of configurations of n indistinguishable pairs placed on the vertices of the ladder graph P_2 X P_n such that exactly k such pairs are joined by a horizontal edge.

Original entry on oeis.org

1, 1, 0, 2, 0, 1, 7, 4, 4, 0, 43, 38, 21, 2, 1, 372, 360, 168, 36, 9, 0, 4027, 3972, 1818, 478, 93, 6, 1, 51871, 51444, 23760, 6640, 1260, 144, 16, 0, 773186, 768732, 358723, 103154, 20205, 2734, 278, 12, 1, 13083385, 13027060, 6129670, 1796740, 363595, 52900, 5650, 400, 25, 0
Offset: 0

Views

Author

Donovan Young, May 19 2019

Keywords

Comments

This is the number of "k-horizontal-domino" configurations in the game of memory played on a 2 X n rectangular array, see [Young].

Examples

			The first few rows of T(n,k) are:
  1;
  1,  0;
  2,  0,  1;
  7,  4,  4,  0;
  43, 38, 21, 2, 1;
  ...
For n=2, let the vertex set of P_2 X P_2 be {A,B,C,D} and the edge set be {AB, AC, BD, CD}, where AB and CD are horizontal edges. For k=0, we may place the pairs on A, C and B, D or on A, D and B, C, hence T(2,0) = 2. If we place a pair on one of the horizontal edges we are forced to place the other pair on the remaining horizontal edge, hence T(2,1)=0 and T(2,2)=1.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Normal[Series[Sum[Factorial2[2*k-1]*y^k/(1-(1-z)*y)/(1+(1-z)*y)^(2*k+1), {k, 0, 20}], {y, 0, 20}]], {y, z}];

Formula

G.f.: Sum_{j>=0} (2*j-1)!! y^j/(1-(1-z)*y)/(1+(1-z)*y)^(2*j+1).
E.g.f.: exp((sqrt(1 - 2 y)-1) (1 - z))/sqrt(1 - 2 y) - exp((y - 2) (1 - z)) sqrt(Pi/2) sqrt(1 - z) (-erfi(sqrt(2) sqrt(1 - z)) + erfi(((1 + sqrt(1 - 2 y)) sqrt(1 - z))/sqrt(2))).
Previous Showing 21-24 of 24 results.