A230562
Smallest number that is the sum of 2 positive 4th powers in >= n ways.
Original entry on oeis.org
0, 2, 635318657
Offset: 0
0 = (empty sum).
2 = 1^4 + 1^4.
635318657 = 59^4 + 158^4 = 133^4 + 134^4.
- R. K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer, 2004, D1
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 6th edition, 2008; section 21.11.
A375329
a(n) is the smallest number which can be represented as the sum of 5 distinct positive n-th powers in exactly 3 ways, or -1 if no such number exists.
Original entry on oeis.org
18, 127, 1548, 16834, 70211956, 342172570
Offset: 1
a(6) = 342172570 = 4^6 + 5^6 + 18^6 + 20^6 + 25^6
= 8^6 + 10^6 + 11^6 + 23^6 + 24^6
= 8^6 + 13^6 + 15^6 + 16^6 + 26^6.
Cf.
A046881,
A342895,
A374418,
A374421,
A374422,
A374423,
A374424,
A374425,
A375330,
A375331,
A375332,
A375333,
A375334.
A375330
a(n) is the smallest number which can be represented as the sum of 6 distinct positive n-th powers in exactly 3 ways, or -1 if no such number exists.
Original entry on oeis.org
24, 175, 1891, 23140, 5490133, 201968338
Offset: 1
a(6) = 201968338 = 2^6 + 3^6 + 14^6 + 18^6 + 19^6 + 22^6
= 2^6 + 10^6 + 14^6 + 15^6 + 18^6 + 23^6
= 4^6 + 6^6 + 10^6 + 11^6 + 21^6 + 22^6.
Cf.
A046881,
A342896,
A374418,
A374421,
A374422,
A374423,
A374424,
A374425,
A375329,
A375331,
A375332,
A375333,
A375334.
A375331
a(n) is the smallest number which can be represented as the sum of 4 distinct positive n-th powers in exactly 4 ways, or -1 if no such number exists.
Original entry on oeis.org
-1, 142, 4445, 300834
Offset: 1
a(4) = 300834 = 1^4 + 4^4 + 12^4 + 23^4
= 1^4 + 16^4 + 18^4 + 19^4
= 3^4 + 6^4 + 18^4 + 21^4
= 7^4 + 14^4 + 16^4 + 21^4.
Cf.
A046881,
A342898,
A374418,
A374421,
A374422,
A374423,
A374424,
A374425,
A375329,
A375330,
A375332,
A375333,
A375334.
A375332
a(n) is the smallest number which can be represented as the sum of 5 distinct positive n-th powers in exactly 4 ways, or -1 if no such number exists.
Original entry on oeis.org
-1, 151, 2465, 54994, 1386406515, 351060139210
Offset: 1
a(4) = 54994 = 1^4 + 2^4 + 4^4 + 8^4 + 15^4
= 1^4 + 2^4 + 9^4 + 10^4 + 14^4
= 2^4 + 5^4 + 6^4 + 11^4 + 14^4
= 3^4 + 7^4 + 8^4 + 10^4 + 14^4.
Cf.
A046881,
A342899,
A374418,
A374421,
A374422,
A374423,
A374424,
A374425,
A375329,
A375330,
A375331,
A375333,
A375334.
A375333
a(n) is the smallest number which can be represented as the sum of 6 distinct positive n-th powers in exactly 4 ways, or -1 if no such number exists.
Original entry on oeis.org
-1, 187, 2492, 56290, 24993485, 2063792939
Offset: 1
a(6) = 2063792939 = 1^6 + 4^6 + 16^6 + 21^6 + 31^6 + 32^6
= 4^6 + 7^6 + 20^6 + 22^6 + 29^6 + 33^6
= 5^6 + 7^6 + 16^6 + 25^6 + 30^6 + 32^6
= 5^6 + 8^6 + 14^6 + 27^6 + 29^6 + 32^6.
Cf.
A046881,
A342900,
A374418,
A374421,
A374422,
A374423,
A374424,
A374425,
A375329,
A375330,
A375331,
A375332,
A375334.
A375334
a(n) is the smallest number which can be represented as the sum of 7 distinct positive n-th powers in exactly 4 ways, or -1 if no such number exists.
Original entry on oeis.org
-1, 268, 2835, 49316, 20301007, 349717731
Offset: 1
a(6) = 349717731 = 2^6 + 6^6 + 7^6 + 17^6 + 20^6 + 22^6 + 23^6
= 2^6 + 8^6 + 10^6 + 11^6 + 16^6 + 21^6 + 25^6
= 5^6 + 8^6 + 10^6 + 11^6 + 14^6 + 23^6 + 24^6
= 5^6 + 8^6 + 13^6 + 14^6 + 15^6 + 16^6 + 26^6.
Cf.
A046881,
A342901,
A374418,
A374421,
A374422,
A374423,
A374424,
A374425,
A375329,
A375330,
A375331,
A375332,
A375333.
A338799
Smallest number that is the sum of two n-th powers of primes in two different ways.
Original entry on oeis.org
10, 338, 6058655748, 3262811042
Offset: 1
10 = 3 + 7 = 5 + 5.
338 = 7^2 + 17^2 = 13^2 + 13^2.
6058655748 = 61^3 + 1823^3 = 1049^3 + 1699^3.
3262811042 = 7^4 + 239^4 = 157^4 + 227^4.
A338800
Smallest number that is the sum of two distinct n-th powers of primes in two different ways.
Original entry on oeis.org
16, 410, 6058655748, 3262811042
Offset: 1
16 = 3 + 13 = 5 + 11.
410 = 7^2 + 19^2 = 11^2 + 17^2.
6058655748 = 61^3 + 1823^3 = 1049^3 + 1699^3.
3262811042 = 7^4 + 239^4 = 157^4 + 227^4.
-
f:= proc(n) local S,P,p,pn,b;
S:= {}:
P:= {}:
p:= 1:
b:= infinity;
do
p:= nextprime(p);
pn:= p^n;
if pn > b then return b fi;
V:= select(`<`,map(`+`,P,pn),b);
newv:= V intersect S;
S:= S union V;
P:= P union {p^n};
if newv <> {} then
b:= min(newv);
S:= select(`<`,S,b);
P:= select(`<`,P, b);
fi;
od:
end proc:
map(f, [$1..4]); # Robert Israel, Nov 13 2020
Comments