cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-52 of 52 results.

A330133 a(n) = (1/16)*(5 + (-1)^(1+n) - 4*cos(n*Pi/2) + 10*n^2).

Original entry on oeis.org

0, 1, 3, 6, 10, 16, 23, 31, 40, 51, 63, 76, 90, 106, 123, 141, 160, 181, 203, 226, 250, 276, 303, 331, 360, 391, 423, 456, 490, 526, 563, 601, 640, 681, 723, 766, 810, 856, 903, 951, 1000, 1051, 1103, 1156, 1210, 1266, 1323, 1381, 1440, 1501, 1563, 1626, 1690, 1756
Offset: 0

Views

Author

Stefano Spezia, Dec 02 2019

Keywords

Comments

For n > 0, partial sums of A047201.

Crossrefs

Cf. A005891, A033583 (10*n^2), A047201.

Programs

  • Magma
    I:=[0, 1, 3, 6, 10, 16]; [n le 6 select I[n] else 2*Self(n-1)-Self(n-2)+Self(n-4)-2*Self(n-5)+Self(n-6): n in [1..54]];
    
  • Maple
    gf:=(1/16)*(-exp(-x) + 5*exp(x)*(1 + 2*x + 2*x^2) - 4*cos(x)); ser := series(gf, x, 54):
    seq(factorial(n)*coeff(ser, x, n), n = 0 .. 53)
  • Mathematica
    Table[(1/16)*(5+(-1)^(1+n)-4*Cos[n*Pi/2]+10*n^2),{n,0,53}]
    LinearRecurrence[{2,-1,0,1,-2,1},{0,1,3,6,10,16},60] (* Harvey P. Dale, Jul 21 2021 *)
  • PARI
    concat([0], Vec(-x*(1 + x + x^2 + x^3 + x^4)/((-1 + x)^3*(1 + x)*(1 + x^2))+O(x^54)))

Formula

O.g.f.: -x*(1 + x + x^2 + x^3 + x^4)/((-1 + x)^3*(1 + x)*(1 + x^2)).
E.g.f.: (1/16)*(-exp(-x) + 5*exp(x)*(1 + 2*x + x^2) - 4*cos(x)).
a(n) = 2*a(n-1) - a(n-2) + a(n-4) -2*a(n-5) + a(n-6) for n > 5.
a(2*n-1) = A005891(n-1) for n > 0.
a(4*n) = 10*n^2. - Bernard Schott, Dec 06 2019

A338239 Values z of primitive solutions (x, y, z) to the Diophantine equation 2*x^3 + 2*y^3 + z^3 = 1.

Original entry on oeis.org

-1, 1, -5, 11, -17, 19, 29, -31, -37, -61, 79, -85, 113, -127, -143, 145, -209, 305, 361, -485, 487, 545, 647, 667, 811, -1091, -1151, 1153, -1235, -1429, -1525, 1597, 1699, -1793, -2249, 2251, -2533, 2627, -2677, 2977, -2981, 3089, -3295, 3739, -3887, 3889
Offset: 1

Views

Author

XU Pingya, Oct 18 2020

Keywords

Comments

Terms are arranged in order of increasing absolute value (if equal, the negative number comes first).
When x = (3*c)*t - (9*a)*t^4, y = (9*a)*t^4, z = c - (9*a)*t^3; a*x^3 + a*y^3 + c*z^3 = c^4. Let a = 2, c = 1, then 1 - 18*n^3 and 1 + 18*n^3 are terms of the sequence. Also, -A337928 and A337929 are subsequences.

Examples

			2*25^3 + 2*(-64)^3 + 79^3 = 2*164^3 + 2*(-167)^3 + 79^3 = 1, 79 is a term.
		

Crossrefs

Programs

  • Mathematica
    Clear[t]
    t = {};
    Do[y = ((1 - 2x^3 - z^3)/2)^(1/3) /. (-1)^(1/3) -> -1;
     If[IntegerQ[y] && GCD[x, y, z] == 1, AppendTo[t, z]], {z, -4000, 4000}, {x, -Round[(Abs[1 + z^3]/6)^(1/2)], Round[(Abs[1 + z^3]/6)^(1/2)]}]
    u = Union@t;
    v = Table[(-1)^n*Floor[(n + 1)/2], {n, 0, 8001}];
    Select[v, MemberQ[u, #] &]
Previous Showing 51-52 of 52 results.