A213753
Rectangular array: (row n) = b**c, where b(h) = 2*h-1, c(h) = -1 + 2^(n-1+h), n>=1, h>=1, and ** = convolution.
Original entry on oeis.org
1, 6, 3, 21, 16, 7, 58, 51, 36, 15, 141, 132, 111, 76, 31, 318, 307, 280, 231, 156, 63, 685, 672, 639, 576, 471, 316, 127, 1434, 1419, 1380, 1303, 1168, 951, 636, 255, 2949, 2932, 2887, 2796, 2631, 2352, 1911, 1276, 511, 5998, 5979, 5928, 5823
Offset: 1
Northwest corner (the array is read by falling antidiagonals):
1....6.....21....58.....141
3....16....51....132....307
7....36....111...280....639
15...76....231...576....1303
31...156...471...1168...2631
-
b[n_] := 2 n - 1; c[n_] := -1 + 2^n;
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213753 *)
Table[t[n, n], {n, 1, 40}] (* A213754 *)
s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
Table[s[n], {n, 1, 50}] (* A213755 *)
A368529
a(n) = Sum_{k=1..n} k^2 * 4^(n-k).
Original entry on oeis.org
0, 1, 8, 41, 180, 745, 3016, 12113, 48516, 194145, 776680, 3106841, 12427508, 49710201, 198841000, 795364225, 3181457156, 12725828913, 50903315976, 203613264265, 814453057460, 3257812230281, 13031248921608, 52124995686961, 208499982748420, 833999930994305
Offset: 0
-
LinearRecurrence[{7, -15, 13, -4}, {0, 1, 8, 41}, 30] (* Paolo Xausa, Jan 29 2024 *)
-
a(n) = sum(k=1, n, k^2*4^(n-k));
A218376
a(n) = 5^n*sum_{i=1..n} i^5/5^i.
Original entry on oeis.org
0, 1, 37, 428, 3164, 18945, 102501, 529312, 2679328, 13455689, 67378445, 337053276, 1685515212, 8427947353, 42140274589, 210702132320, 1053511710176, 5267559970737, 26337801743253, 131689011192364, 658445059161820
Offset: 0
-
f[n_] := 5^n*Sum[i^5/5^i, {i, n}]; Array[f, 30, 0]
A368504
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} k^(n-j) * j^k.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 6, 1, 0, 1, 11, 21, 10, 1, 0, 1, 20, 60, 58, 15, 1, 0, 1, 37, 161, 244, 141, 21, 1, 0, 1, 70, 428, 900, 857, 318, 28, 1, 0, 1, 135, 1149, 3164, 4225, 2787, 685, 36, 1, 0, 1, 264, 3132, 10990, 18945, 18196, 8704, 1434, 45, 1
Offset: 0
Square array begins:
1, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 3, 6, 11, 20, 37, 70, ...
1, 6, 21, 60, 161, 428, 1149, ...
1, 10, 58, 244, 900, 3164, 10990, ...
1, 15, 141, 857, 4225, 18945, 81565, ...
1, 21, 318, 2787, 18196, 102501, 536046, ...
A368528
a(n) = Sum_{k=1..n} k^2 * 3^(n-k).
Original entry on oeis.org
0, 1, 7, 30, 106, 343, 1065, 3244, 9796, 29469, 88507, 265642, 797070, 2391379, 7174333, 21523224, 64569928, 193710073, 581130543, 1743391990, 5230176370, 15690529551, 47071589137, 141214767940, 423644304396, 1270932913813, 3812798742115
Offset: 0
Comments