A267495
Autobiographical numbers in base 7: numbers which are fixed or belong to a cycle under the operator T.
Original entry on oeis.org
22, 10213223, 10311233, 10313314, 10313315, 10313316, 21322314, 21322315, 21322316, 31123314, 31123315, 31123316, 31331415, 31331416, 31331516, 1031223314, 1031223315, 1031223316, 3122331415, 3122331416, 3122331516, 103142132415, 104122232415, 103142132416, 104122232416, 314213241516, 412223241516, 1011112131415, 1011112131416, 1011112131516, 1011112141516, 1011113141516, 1111213141516, 10414213142516, 10413223241516, 10512223142516, 10512213341516, 101112213141516
Offset: 1
10213223 contains one 0, two 1's, three 2's and two 3's, so T(10213223) = 1 0 2 1 3 2 2 3, and this is fixed under T.
103142132415 and 104122232415 belong to the cycle of length 2, so
T(T(103142132415)) = T(1 0 4 1 2 2 2 3 2 4 1 5) = 1 0 3 1 4 2 1 3 2 4 1 5.
- Antonia Münchenbach and Nicole Anton George, "Eine Abwandlung der Conway-Folge", contribution to "Jugend forscht" 2016, 2016
Cf.
A047841,
A267491,
A267492,
A267493,
A267494,
A267495,
A267496,
A267497,
A267498,
A267499,
A267500,
A267502.
A267496
Autobiographical numbers in base 8: numbers which are fixed or belong to a cycle under the operator T.
Original entry on oeis.org
22, 10213223, 10311233, 10313314, 10313315, 10313316, 10313317, 21322314, 21322315, 21322316, 21322317, 31123314, 31123315, 31123316, 31123317, 31331415, 31331416, 31331417, 31331516, 31331517, 31331617
Offset: 1
10213223 contains one 0, two 1's, three 2's and two 3's, so T(10213223) = 1 0 2 1 3 2 2 3, and this is fixed under T.
103142132415 and 104122232415 belong to the cycle of length 2, so T(T(103142132415)) = T(1 0 4 1 2 2 2 3 2 4 1 5) = 1 0 3 1 4 2 1 3 2 4 1 5.
- Antonia Münchenbach and Nicole Anton George, "Eine Abwandlung der Conway-Folge", contribution to "Jugend forscht" 2016, 2016
Cf.
A047841,
A267491,
A267492,
A267493,
A267494,
A267495,
A267496,
A267497,
A267498,
A267499,
A267500,
A267502.
A267497
Autobiographical numbers in base 9: numbers which are fixed or belong to a cycle under the operator T (see comments).
Original entry on oeis.org
22, 10213223, 10311233, 10313314, 10313315, 10313316, 10313317, 10313318, 21322314, 21322315, 21322316, 21322317, 21322318, 31123314, 31123315, 31123316, 31123317, 31123318
Offset: 1
10213223 contains one 0, two 1's, three 2's and two 3's, so T(10213223) = 1 0 2 1 3 2 2 3, and this is fixed under T.
103142132415 and 104122232415 belong to the cycle of length 2, so T(T(103142132415)) = T(1 0 4 1 2 2 2 3 2 4 1 5) = 1 0 3 1 4 2 1 3 2 4 1 5.
- Antonia Münchenbach and Nicole Anton George, "Eine Abwandlung der Conway-Folge", contribution to "Jugend forscht" 2016, 2016
Cf.
A047841,
A267491,
A267492,
A267493,
A267494,
A267495,
A267496,
A267497,
A267498,
A267499,
A267500,
A267502.
A267498
Autobiographical numbers in base 10: numbers which are fixed or belong to a cycle under the operator T.
Original entry on oeis.org
22, 10213223, 10311233, 10313314, 10313315, 10313316, 10313317, 10313318, 10313319, 21322314, 21322315, 21322316, 21322317, 21322318, 21322319, 31123314, 31123315, 31123316, 31123317, 31123318, 31123319, 31331415, 31331416, 31331417, 31331418, 31331419, 31331516, 31331517, 31331518
Offset: 1
10213223 contains one 0, two 1's, three 2's and two 3's, so T(10213223) = 1 0 2 1 3 2 2 3, and this is fixed under T.
103142132415 and 104122232415 belong to the cycle of length 2, so T(T(103142132415)) = T(1 0 4 1 2 2 2 3 2 4 1 5) = 1 0 3 1 4 2 1 3 2 4 1 5.
- Antonia Münchenbach and Nicole Anton George, "Eine Abwandlung der Conway-Folge", contribution to "Jugend forscht" 2016, 2016
Cf.
A047841,
A267491,
A267492,
A267493,
A267494,
A267495,
A267496,
A267497,
A267498,
A267499,
A267500,
A267502.
A267499
Number of fixed points of autobiographical numbers (A267491 ... A267498) in base n.
Original entry on oeis.org
2, 7, 7, 12, 19, 29, 44, 68, 109, 183
Offset: 2
In base two there are only two fixed-points, 111 and 1101001.
In base 3, there are 7 fixed-points: 22, 10111, 11112, 100101, 1011122, 2021102, and 10010122.
- Antonia Münchenbach and Nicole Anton George, "Eine Abwandlung der Conway-Folge", contribution to "Jugend forscht" 2016, 2016.
Cf.
A047841,
A267491,
A267492,
A267493,
A267494,
A267495,
A267496,
A267497,
A267498,
A267499,
A267500,
A267502.
A267500
Number of fixed points or cycles of autobiographical numbers (A267491 ... A267498) in base n.
Original entry on oeis.org
2, 10, 7, 12, 21, 38, 67, 116, 201, 354
Offset: 2
In base two there are only two fixed-points, 111 and 1101001.
In base 3, there are 7 fixed-points: 22, 10111, 11112, 100101, 1011122, 2021102, 10010122 and 1 cycle of length 3 with 2012112, 1010102, 10011112.
In base 10, there are 109 fixed-points, 31 cycles of length 2 (62 numbers) and 10 cycles of length 3 (30 numbers).
- Antonia Münchenbach and Nicole Anton George, "Eine Abwandlung der Conway-Folge", contribution to "Jugend forscht" 2016, 2016
Cf.
A047841,
A267491,
A267492,
A267493,
A267494,
A267495,
A267496,
A267497,
A267498,
A267499,
A267500,
A267502.
A267502
Number of cycles of length 3 of autobiographical numbers (A267491 ... A267498) in base n.
Original entry on oeis.org
0, 3, 0, 0, 0, 3, 9, 18, 45
Offset: 2
In base two, four, five and six there is no cycle of length 3.
In base three, there is 1 cycle of length 3 with 3 numbers: 10011112, 10101102, 2012112.
In base 10, there are 6 cycles of length 3 (18 numbers).
- Antonia Münchenbach and Nicole Anton George, "Eine Abwandlung der Conway-Folge", contribution to "Jugend forscht" 2016, 2016
Cf.
A047841,
A267491,
A267492,
A267493,
A267494,
A267495,
A267496,
A267497,
A267498,
A267499,
A267500,
A267501,
A267502.
A108810
Self-describing primes.
Original entry on oeis.org
10153331, 10173133, 10233221, 10311533, 10322321, 12103331, 12163133, 12163331, 12193133, 12311933, 12313319, 15103133, 15233221, 15311633, 15331931, 15333119, 16153133, 16153331, 16173133, 16331531, 16331831, 16333117, 17143331, 17311633, 17331031, 18103133
Offset: 1
E.g. 10153331 reads "One 0, one 5, three 3's and three 1's", which does indeed describe 10153331.
- Computed by Jud McCranie.
- Mudge, 'Numbers Count', Personal Computer World, Jun 15 1996
A237605
Numbers n such that A047842(n) | n.
Original entry on oeis.org
0, 22, 777, 4444, 303300, 333333, 555555, 588588, 666666, 888688, 2032230, 5055555, 5858558, 6568588, 6868288, 7339393, 8282088, 10213223, 10311233, 10313314, 10313315, 10313316, 10313317, 10313318, 10313319, 20002200, 21322314, 21322315, 21322316, 21322317, 21322318
Offset: 1
-
P:=proc(q) local a,b,c,d,f,n,v; print(0); v:=array[0..9];
for n from 1 to q do a:=n; for b from 0 to 9 do v[b]:=0; od;
while a>0 do b:=a mod 10; v[b]:=v[b]+1; a:=trunc(a/10); od; a:=0;
for b from 0 to 9 do if v[b]>0 then c:=10*v[b]+b; f:=0; d:=c;
while d>0 do f:=f+1; d:=trunc(d/10); od; a:=a*10^f+c; fi; od;
if type(n/a,integer) then print(n); fi; od; end: P(10^10);
-
Select[Range[10^6], Mod[#, FromDigits@ Flatten[IntegerDigits /@ Flatten[ Reverse /@ Tally@ Sort@ IntegerDigits@#]]] == 0 &] (* Giovanni Resta, Feb 10 2014 *)
A047843
Describe n: give frequency of each digit, by increasing size; mention also missing digits between the smallest and largest one.
Original entry on oeis.org
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1011, 21, 1112, 110213, 11020314, 1102030415, 110203040516, 11020304050617, 1102030405060718, 110203040506070819, 100112, 1112, 22, 1213, 120314, 12030415, 1203040516
Offset: 0
131 contains two 1's, zero 2's and one 3, so a(131) = 210213.
-
a[n_] := Module[{T, f}, T = Tally[IntegerDigits[n]]; f[_] = 0; Do[f[t[[1]]] = t[[2]], {t, T}]; Table[{f[k], k}, {k, Min@T[[All, 1]], Max@T[[All, 1]]} ] // Flatten // FromDigits];
a /@ Range[0, 26] (* Jean-François Alcover, Jan 07 2020 *)
-
A047843(n,S="")={if(n,for(d=vecmin(n=digits(n)),vecmax(n),S=Str(S,#select(t->t==d,n),d));eval(S),10)} \\ M. F. Hasler, Feb 25 2018
Comments