cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A047903 a(1) = 13; for n > 0, a(n+1) = a(n) * sum of digits of a(n).

Original entry on oeis.org

13, 52, 364, 4732, 75712, 1665664, 56632576, 2265303040, 56632576000, 2265303040000, 56632576000000, 2265303040000000, 56632576000000000, 2265303040000000000, 56632576000000000000, 2265303040000000000000
Offset: 1

Views

Author

Miklos SZABO (mike(AT)ludens.elte.hu)

Keywords

Comments

After the 7th element, every second element has the same beginning. a(9+2k) = 40 * a(8+2k) = 40 * 25 * a(7+2k).

Crossrefs

Cf. A047892.

Programs

  • Mathematica
    NestList[# Total[IntegerDigits[#]]&,13,20] (* Harvey P. Dale, Jan 08 2019 *)

A140131 a(n) = a(n-1) + a(n-2) + digsum(a(n-1)) + digsum(a(n-2)), with a(0)=0 and a(1)=1.

Original entry on oeis.org

0, 1, 2, 6, 16, 35, 66, 121, 203, 333, 550, 902, 1473, 2401, 3896, 6330, 10264, 16619, 26919, 43588, 70562, 114198, 184804, 299051, 483906, 783013, 1266971, 2050038, 3317059, 5367143, 8684259, 14051473, 22735799, 36787341, 59523223, 96310634, 155833920, 252144622
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    P:=proc(n) local i,t; t:=[0,1]; for i from 1 to n do t:=[op(t),t[-2]+t[-1]+convert(convert(t[-2],base,10),`+`)+convert(convert(t[-1],base,10),`+`)]; od; print(op(t)); end: P(34); # Paolo P. Lava, Jun 25 2024
  • Mathematica
    nxt[{a_,b_}]:=a+b+Total[IntegerDigits[a]]+Total[IntegerDigits[b]]; Transpose[NestList[{Last[#],nxt[#]}&,{0,1},40]][[1]] (* Harvey P. Dale, Oct 31 2011 *)

A110365 a(1)=2, a(n+1) = a(n)*A010888(a(n)).

Original entry on oeis.org

2, 4, 16, 112, 448, 3136, 12544, 87808, 351232, 2458624, 9834496, 68841472, 275365888, 1927561216, 7710244864, 53971714048, 215886856192, 1511207993344, 6044831973376, 42313823813632, 169255295254528, 1184787066781696, 4739148267126784, 33174037869887488
Offset: 1

Views

Author

Amarnath Murthy, Jul 24 2005

Keywords

Comments

From a(2) onwards, the digital root follows the pattern alternately 4,7,4,7,4,7,...

Crossrefs

Programs

  • Mathematica
    k = 2; Do[Print[k]; k *= Mod[Plus @@ IntegerDigits[k], 9], {n, 1, 30}] (* Ryan Propper, Oct 13 2005 *)
    LinearRecurrence[{0,28},{2,4,16},30] (* Harvey P. Dale, Mar 17 2019 *)
  • PARI
    Vec(2*x*(1+2*x-20*x^2)/(1-28*x^2) + O(x^50)) \\ Colin Barker, May 05 2016

Formula

a(1) = 2, a(2) = 4, a(3) = 16. a(2*n) = 4*a(2*n-1), a(2*n+1) = 7*a(2*n) for n > 1.
From Colin Barker, May 05 2016: (Start)
a(n) = 2^(-1+n)*(7^(1/2*(-3+n))*(2-2*(-1)^n + sqrt(7) + (-1)^n*sqrt(7))) for n > 1.
a(n) = 2^n*7^(n/2-1) for n > 1 and even.
a(n) = 2^(n+1)*7^((n-3)/2) for n > 1 and odd.
a(n) = 28*a(n-2) for n > 3.
G.f.: 2*x*(1+2*x-20*x^2) / (1-28*x^2).
(End)
E.g.f.: (-7 + 70*x + 7*cosh(2*Sqrt(7)*x) + 2*sqrt(7)*sinh(2*sqrt(7)*x))/49. - Ilya Gutkovskiy, May 05 2016

Extensions

More terms from Ryan Propper, Oct 13 2005
Name clarified by Robert Israel, May 05 2016

A140132 a(n) = Sum_digits{a(n-1)+a(n-2)+Sum_digits[a(n-1)]+Sum_digits[a(n-2)]}, with a(0)=0 and a(1)=1.

Original entry on oeis.org

0, 1, 2, 6, 7, 8, 3, 4, 5, 9, 10, 11, 6, 7, 8, 3, 4, 5, 9, 10, 11, 6, 7, 8, 3, 4, 5, 9, 10, 11, 6, 7, 8, 3, 4, 5, 9, 10, 11, 6, 7, 8, 3, 4, 5, 9, 10, 11, 6, 7, 8, 3, 4, 5, 9, 10, 11, 6, 7, 8, 3, 4, 5, 9, 10, 11, 6, 7, 8, 3, 4, 5, 9, 10, 11, 6, 7, 8, 3, 4, 5, 9, 10, 11, 6, 7, 8, 3, 4, 5, 9, 10, 11, 6, 7
Offset: 0

Views

Author

Keywords

Comments

After the first three terms the sequence is periodic: 6,7,8,3,4,5,9,10,11.

Crossrefs

Programs

  • Maple
    P:=proc(n) local a,i,t; t:=[0,1]; for i from 1 to n do
    a:=t[-2]+t[-1]+convert(convert(t[-2],base,10),`+`)+convert(convert(t[-1],base,10),`+`);
    t:=[op(t),convert(convert(a,base,10),`+`)]; od; print(op(t)); end: P(93); # Paolo P. Lava, Jun 25 2024
Previous Showing 11-14 of 14 results.