A268840
Number of sequences with n copies each of 1,2,3,4 and longest increasing subsequence of length 4.
Original entry on oeis.org
1, 641, 195709, 46922017, 10258694241, 2176464012941, 460827731023773, 98540942707986273, 21364658238692907265, 4697818999010952011441, 1046430770756355786405517, 235755137688345453796236397, 53640184515807269993604743389, 12308974812428409561104536925709
Offset: 1
A268841
Number of sequences with n copies each of 1,2,...,5 and longest increasing subsequence of length 5.
Original entry on oeis.org
1, 11389, 50775091, 162588279629, 449363984934526, 1162145520205261219, 2931247600219365331976, 7370846583668954571029069, 18683332440278067962764855531, 47964531978782851644184417448714, 124871404619023570844557764310152386
Offset: 1
- Vaclav Kotesovec and Alois P. Heinz, Table of n, a(n) for n = 1..150 (terms n=1..80 from Vaclav Kotesovec)
- J. D. Horton and A. Kurn, Counting sequences with complete increasing subsequences, Congressus Numerantium, 33 (1981), 75-80. MR 681905
A268842
Number of sequences with n copies each of 1,2,...,6 and longest increasing subsequence of length 6.
Original entry on oeis.org
1, 248749, 20117051281, 1077273394836829, 47342758641593552281, 1878320344216429026862153, 70803267480031877368227941803, 2612508237897293571677286548812861, 96042041352156959435669839199503441435, 3553102771891168237056005934820411063204249
Offset: 1
- Alois P. Heinz, Table of n, a(n) for n = 1..100 (terms n=1..50 from Vaclav Kotesovec)
- J. D. Horton and A. Kurn, Counting sequences with complete increasing subsequences, Congressus Numerantium, 33 (1981), 75-80. MR 681905
A268843
Number of sequences with n copies each of 1,2,...,7 and longest increasing subsequence of length 7.
Original entry on oeis.org
1, 6439075, 11260558754404, 12084070123028603391, 10162884447920460534301136, 7465237877942551321425443305798, 5078529731893937404909347067888886466, 3315159778348807570604149155371730111763599, 2124172213523649116114190361767338538457819064671
Offset: 1
- Vaclav Kotesovec and Alois P. Heinz, Table of n, a(n) for n = 1..100 (terms n=1..36 from Vaclav Kotesovec)
- J. D. Horton and A. Kurn, Counting sequences with complete increasing subsequences, Congressus Numerantium, 33 (1981), 75-80. MR 681905
A268844
Number of sequences with n copies each of 1,2,...,8 and longest increasing subsequence of length 8.
Original entry on oeis.org
1, 192621953, 8445885515991841, 211301962987912098409729, 3969183064899133655031651559801, 63178476289432401423971737795658030945, 909546798992441266072332791609067485208949369, 12324197596430667064913735085330208112438377122058241
Offset: 1
A268845
Number of sequences with n copies each of 1,2,...,9 and longest increasing subsequence of length 9.
Original entry on oeis.org
1, 6536413529, 8167981106765263789, 5426679072605204732028894233, 2599293828638212400913690945686101111, 1025794060996626005769021866749636185341527229, 358281333933096129012031117609647623312585201668494007
Offset: 1
A268846
Number of sequences with n copies each of 1,2,...,10 and longest increasing subsequence of length 10.
Original entry on oeis.org
1, 248040482741, 9891092676022013399311, 195676681342450229063393365876181, 2683885055441747960475755652405552969614101, 29539005031390270063835072245497576346701114916209911, 282011782951614089942684801199121868144180995938610087493133121
Offset: 1
A268847
Number of sequences with 4 copies each of 1,2,...,n and longest increasing subsequence of length n.
Original entry on oeis.org
1, 1, 69, 31451, 46922017, 162588279629, 1077273394836829, 12084070123028603391, 211301962987912098409729, 5426679072605204732028894233, 195676681342450229063393365876181, 9562449832974304724626743446267704131, 615516610914323638585463757154352054695009
Offset: 0
a(2) = binomial(8,4) - 1 = 69 because there are binomial(8,4) = 70 sequences with 4 copies of 1 and 4 copies of 2 and only 22221111 does not have an increasing subsequence of length 2.
- Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..145 (terms 0..70 from Alois P. Heinz)
- J. D. Horton and A. Kurn, Counting sequences with complete increasing subsequences, Congressus Numerantium, 33 (1981), 75-80. MR 681905
-
Table[Sum[Sum[Sum[k!/(i1!*i2!*i3!*(k - i1 - i2 - i3)!)*(4*k)!/(i1 + 2*i2 + 3*i3 + 4*(k - i1 - i2 - i3))!*(-1)^(i1 + 2*i2 + 3*i3 + 4*(k - i1 - i2 - i3) - k)/(6^i1*2^i2), {i3, 0, k - i1 - i2}], {i2, 0, k - i1}], {i1, 0, k}], {k, 0, 20}] (* Vaclav Kotesovec, Mar 02 2016, after Horton and Kurn *)
A268848
Number of sequences with 5 copies each of 1,2,...,n and longest increasing subsequence of length n.
Original entry on oeis.org
1, 1, 251, 729811, 10258694241, 449363984934526, 47342758641593552281, 10162884447920460534301136, 3969183064899133655031651559801, 2599293828638212400913690945686101111, 2683885055441747960475755652405552969614101
Offset: 0
- Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..100 (terms 0..50 from Alois P. Heinz)
- J. D. Horton and A. Kurn, Counting sequences with complete increasing subsequences, Congressus Numerantium, 33 (1981), 75-80. MR 681905
-
Table[Sum[Sum[Sum[Sum[k!/(i1!*i2!*i3!*i4!*(k - i1 - i2 - i3 - i4)!)*(5*k)!/(i1 + 2*i2 + 3*i3 + 4*i4 + 5*(k - i1 - i2 - i3 - i4))!*(-1)^(i1 + 2*i2 + 3*i3 + 4*i4 + 5*(k - i1 - i2 - i3 - i4) - k)/(24^i1*6^i2*2^ i3), {i4, 0, k - i1 - i2 - i3}], {i3, 0, k - i1 - i2}], {i2, 0, k - i1}], {i1, 0, k}], {k, 0, 15}] (* Vaclav Kotesovec, Mar 02 2016, after Horton and Kurn *)
A268849
Number of sequences with 6 copies each of 1,2,...,n and longest increasing subsequence of length n.
Original entry on oeis.org
1, 1, 923, 16928840, 2176464012941, 1162145520205261219, 1878320344216429026862153, 7465237877942551321425443305798, 63178476289432401423971737795658030945, 1025794060996626005769021866749636185341527229, 29539005031390270063835072245497576346701114916209911
Offset: 0
- Vaclav Kotesovec and Alois P. Heinz, Table of n, a(n) for n = 0..97 (terms n=0..34 from Vaclav Kotesovec)
- J. D. Horton and A. Kurn, Counting sequences with complete increasing subsequences, Congressus Numerantium, 33 (1981), 75-80. MR 681905
-
Table[Sum[Sum[Sum[Sum[Sum[k!/(i1!*i2!*i3!*i4!*i5!*(k - i1 - i2 - i3 - i4 - i5)!)*(6*k)!/(i1 + 2*i2 + 3*i3 + 4*i4 + 5*i5 + 6*(k - i1 - i2 - i3 - i4 - i5))!*(-1)^(i1 + 2*i2 + 3*i3 + 4*i4 + 5*i5 + 6*(k - i1 - i2 - i3 - i4 - i5) - k)/(120^ i1*24^i2*6^i3*2^i4), {i5, 0, k - i1 - i2 - i3 - i4}], {i4, 0, k - i1 - i2 - i3}], {i3, 0, k - i1 - i2}], {i2, 0, k - i1}], {i1, 0, k}], {k, 0, 10}] (* Vaclav Kotesovec, Mar 02 2016, after Horton and Kurn *)