A325963 Numbers n for which A034448(n)-n is equal to n-A048250(n).
1, 4, 24, 240, 349440
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
up_to = 65537; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; A003557(n) = n/factorback(factor(n)[, 1]); \\ From A003557 A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523 A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d))); A291750(n) = (1/2)*(2 + ((A003557(n)+A048250(n))^2) - A003557(n) - 3*A048250(n)); Aux326199(n) = if((n>2)&&isprime(n),0,(1/2)*(2 + ((A046523(n) + A291750(n))^2) - A046523(n) - 3*A291750(n))); v326199 = rgs_transform(vector(up_to,n,Aux326199(n))); A326199(n) = v326199[n];
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); A003557(n) = (n/factorback(factorint(n)[, 1])); A048250(n) = factorback(apply(p -> p+1,factor(n)[,1])); A344753(n) = sumdiv(n,d,(dA342001(n) = (A003415(n) / A003557(n)); A345001(n) = (sigma(n)+A003415(n)-(2*n)); isA345004(n) = { my(u=A345001(n),v=A342001(n)); (v>0&&1==denominator(u/v)&&(u*A048250(n) == v*A344753(n))); };
15265 is a term because A003557(15265) = 1 = A003557(15169), A048250(15265) = 19008 = A048250(15169), A173557(15265) = 11760 = A173557(15169). 27962 is a term because A003557(27962) = 1 = A003557(26355), A048250(27962) = 48384 = A048250(26355), A173557(27962) = 12000 = A173557(26355).
search_up_to = (2^23); A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = max(0,f[i, 2]-1)); factorback(f); }; A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d))); A173557(n) = my(f=factor(n)[, 1]); prod(k=1, #f, f[k]-1); \\ This function from Michel Marcus, Oct 31 2017 Anotsubmitted1(n) = (1/2)*(2 + ((A003557(n)+A173557(n))^2) - A003557(n) - 3*A173557(n)); Akaikki3(n) = (1/2)*(2 + ((A048250(n)+Anotsubmitted1(n))^2) - A048250(n) - 3*Anotsubmitted1(n)); om = Map(); m = 0; i=0; for(n = 1, search_up_to, k = Akaikki3(n); if(!mapisdefined(om,k), mapput(om,k,n), i++; write("b296087.txt", i, " ", n)));
a[n_] := If[n == 1, 1, Module[{f=FactorInteger[n]}, LCM[ Times@@ (First[#] ^(Last[#]-1)& /@ f), Times@@((#+1)& @@@ f)]]]; Array[a, 120] (* Amiram Eldar, Dec 05 2018 *)
A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); }; \\ From A003557 A048250(n) = factorback(apply(p -> p+1, factor(n)[, 1])); A322319(n) = lcm(A048250(n), A003557(n));
Array[BitOr @@ Map[Total, {#3, Complement[#2, #3]}] & @@ {#1, #2, Select[#2, SquareFreeQ]} & @@ {#, Divisors[#]} &, 79] (* Michael De Vlieger, Apr 21 2019 *)
A048250(n) = factorback(apply(p -> p+1,factor(n)[,1])); A162296(n) = sumdiv(n, d, d*(1-issquarefree(d))); A325316(n) = bitor(A048250(n),A162296(n));
Comments