cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A101085 Diagonal below the main diagonal of A083796, i.e., a(n) = A083796(n, n-1).

Original entry on oeis.org

2, 2, 5, 4, 8, 6, 11, 8, 24, 10, 17, 12, 20, 14, 135, 16, 26, 18, 29, 20, 252, 22, 35, 24, 90, 26, 153, 28, 44, 30, 47, 32, 594, 34, 665, 36, 56, 38, 819, 40, 62, 42, 65, 44, 1080, 46, 71, 48, 224, 50, 1377, 52, 80, 54, 1595, 56, 1710, 58, 89, 60, 92, 62, 2079, 64, 2210, 66
Offset: 2

Views

Author

David Wasserman, Nov 30 2004

Keywords

Comments

a(n) is the least k such that 1) n divides k + (n-1)(n-2)/2; 2) k > n-2; 3) A048671(n-1) divides k.

Crossrefs

A380118 a(n) = Sum_{k=1..n} (A014963(k) - A061397(k)).

Original entry on oeis.org

1, 1, 1, 3, 3, 4, 4, 6, 9, 10, 10, 11, 11, 12, 13, 15, 15, 16, 16, 17, 18, 19, 19, 20, 25, 26, 29, 30, 30, 31, 31, 33, 34, 35, 36, 37, 37, 38, 39, 40, 40, 41, 41, 42, 43, 44, 44, 45, 52, 53, 54, 55, 55, 56, 57, 58, 59, 60, 60, 61, 61, 62, 63, 65, 66, 67, 67, 68, 69, 70
Offset: 1

Views

Author

Peter Luschny, Jan 30 2025

Keywords

Crossrefs

Programs

  • Maple
    pSum := L -> ListTools:-PartialSums(L): h := n -> n/A048671(n) - n*A010051(n):
    aList := upto -> pSum([seq(h(k), k = 1..upto)]): aList(70);
  • Mathematica
    Accumulate[Table[Exp[MangoldtLambda[n]] - If[PrimeQ[n], n, 0] , {n, 1, 70}]]

Formula

a(n) = A072107(n) - A034387(n). - Amiram Eldar, Jan 30 2025

A140651 A140579^(-1) * A000290, the squares starting (1, 4, 9, ...).

Original entry on oeis.org

1, 2, 3, 8, 5, 36, 7, 32, 27, 100, 11, 144, 13, 196, 225, 128, 17, 324, 19, 400, 441, 484, 23, 576, 125, 676, 243, 784, 29, 900, 31, 512, 1089, 1156, 1225, 1296, 37, 1444, 1521, 1600, 41, 1764, 43, 1936, 2025, 2116, 47, 2304, 343, 2500, 2601, 2704, 53, 2916, 3025, 3136, 3249, 3364, 59, 3600
Offset: 1

Views

Author

Gary W. Adamson and Mats Granvik, May 20 2008

Keywords

Comments

For n > 1, a(n) = n iff n is prime.
a(n) is n times the least common multiple of the proper divisors of n, a(n) = n*A048671(n). - Peter Luschny, Jun 22 2011

Examples

			A140579 = an infinite lower triangular matrix with A014963 in the main diagonal and the rest zeros; where A014963 = (1, 2, 3, 2, 5, 1, 7, ...).
a(5) = 5 = (1/A014963(5)) * 25 = (1/5)*25.
		

Crossrefs

Programs

Formula

A140579^(-1) * (1, 4, 9, 16, 25, ...).

Extensions

a(15)-a(60) from Peter Luschny, Jun 22 2011

A189914 a(n) is 2^phi(n) times the least common multiple of the proper divisors of n.

Original entry on oeis.org

1, 2, 2, 4, 8, 16, 24, 64, 64, 192, 160, 1024, 192, 4096, 896, 3840, 2048, 65536, 1152, 262144, 5120, 86016, 22528, 4194304, 6144, 5242880, 106496, 2359296, 114688, 268435456, 7680, 1073741824, 1048576, 34603008, 2228224, 587202560, 147456, 68719476736, 9961472
Offset: 0

Views

Author

Peter Luschny, Jun 22 2011

Keywords

Comments

The sequence relates arithmetic properties of roots of unity in the complex plane with number theoretic properties of integers. This connection often appears as intriguing identities showing products of specific values of the sine function or the gamma function reducing to simple values (see for instance the first formula below).

Programs

  • Maple
    A189914 := n -> 2^numtheory[phi](n)*ilcm(op(numtheory[divisors](n) minus {1,n})): seq(A189914(n), n=0..35);
  • Mathematica
    a[n_] := 2^EulerPhi[n] * LCM @@ Most[Divisors[n]]; a[0] = 1; a[1] = 2; Table[a[n], {n, 0, 38}] (* Jean-François Alcover, Jan 22 2014 *)
  • PARI
    a(n)=if(n,my(p=n); if(isprime(n)||(ispower(n, , &p)&&isprime(p)), n/p, n)<Charles R Greathouse IV, Jun 24 2011

Formula

Let R(n) = {k | gcd(n,k) = 1, k = 1..floor(n/2)} and b(n) = product_{R(n)} sin(Pi*k/n) then a(n) = n / b(n)^2 for n > 1.
a(n) = A066781(n)*A048671(n).

A340679 If n is a power of prime then a(n) = 1, otherwise a(n) = product of the distinct prime factors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 10, 1, 6, 1, 14, 15, 1, 1, 6, 1, 10, 21, 22, 1, 6, 1, 26, 1, 14, 1, 30, 1, 1, 33, 34, 35, 6, 1, 38, 39, 10, 1, 42, 1, 22, 15, 46, 1, 6, 1, 10, 51, 26, 1, 6, 55, 14, 57, 58, 1, 30, 1, 62, 21, 1, 65, 66, 1, 34, 69, 70, 1, 6, 1, 74, 15, 38, 77, 78, 1, 10, 1, 82, 1, 42, 85, 86, 87, 22, 1, 30, 91, 46
Offset: 1

Views

Author

Antti Karttunen, Feb 01 2021

Keywords

Crossrefs

Cf. A000961 (positions of ones), A007947, A010055, A014963.
Cf. also A048671, A322591.

Programs

  • Mathematica
    Table[If[PrimePowerQ[n],1,Times@@FactorInteger[n][[All,1]]],{n,100}] (* Harvey P. Dale, May 23 2021 *)
  • PARI
    A340679(n) = if(isprimepower(n),1,factorback(factorint(n)[, 1]));

Formula

If A010055(n) == 1 [when n is a power of prime], a(n) = 1, otherwise a(n) = A007947(n).
a(n) = A007947(n) / A014963(n).

A133689 a(n) = smallest integer that is > n and is a multiple of every proper divisor of n.

Original entry on oeis.org

3, 4, 6, 6, 12, 8, 12, 12, 20, 12, 24, 14, 28, 30, 24, 18, 36, 20, 40, 42, 44, 24, 48, 30, 52, 36, 56, 30, 60, 32, 48, 66, 68, 70, 72, 38, 76, 78, 80, 42, 84, 44, 88, 90, 92, 48, 96, 56, 100, 102, 104, 54, 108, 110, 112, 114, 116, 60
Offset: 2

Views

Author

Leroy Quet, Dec 31 2007

Keywords

Comments

a(n) = A048671(n) + n.

Examples

			The proper divisors of 16 are 1,2,4,8. a(16)=24 is the smallest integer which is both > 16 and is a multiple of 1, of 2, of 4 and of 8.
		

Crossrefs

Cf. A048671.

Programs

  • Mathematica
    a = {}; For[n = 2, n < 60, n++, i = n + 1; While[Length[Union[Mod[i, Complement[Divisors[n], {n}]]]] > 1, i++ ]; AppendTo[a, i]]; a (* Stefan Steinerberger, Aug 30 2008 *)

Extensions

More terms from Stefan Steinerberger, Aug 30 2008
Previous Showing 11-16 of 16 results.