cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A360996 Multiplicative with a(p^e) = 5*e, p prime and e > 0.

Original entry on oeis.org

1, 5, 5, 10, 5, 25, 5, 15, 10, 25, 5, 50, 5, 25, 25, 20, 5, 50, 5, 50, 25, 25, 5, 75, 10, 25, 15, 50, 5, 125, 5, 25, 25, 25, 25, 100, 5, 25, 25, 75, 5, 125, 5, 50, 50, 25, 5, 100, 10, 50, 25, 50, 5, 75, 25, 75, 25, 25, 5, 250, 5, 25, 50, 30, 25, 125, 5, 50, 25, 125, 5, 150
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 28 2023

Keywords

Crossrefs

Cf. A005361 (multiplicative with a(p^e) = e), A000005 (e+1), A343443 (e+2), A360997 (e+3), A322327 (2*e), A048691 (2*e+1), A360908 (2*e-1), A226602 (3*e), A048785 (3*e+1), A360910 (3*e-1), A360909 (3*e+2), A360911 (3*e-2), A322328 (4*e).
Cf. A082476.

Programs

  • Mathematica
    g[p_, e_] := 5*e; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1+3*X+X^2)/(1-X)^2)[n], ", "))

Formula

Dirichlet g.f.: Product_{primes p} (1 + 5*p^s/(p^s - 1)^2).
a(n) = A005361(n) * A082476(n).

A353551 a(n) = Sum_{k=1..n} tau(k^3), where tau is the number of divisors function A000005.

Original entry on oeis.org

0, 1, 5, 9, 16, 20, 36, 40, 50, 57, 73, 77, 105, 109, 125, 141, 154, 158, 186, 190, 218, 234, 250, 254, 294, 301, 317, 327, 355, 359, 423, 427, 443, 459, 475, 491, 540, 544, 560, 576, 616, 620, 684, 688, 716, 744, 760, 764, 816, 823, 851, 867, 895, 899, 939, 955, 995
Offset: 0

Views

Author

Karl-Heinz Hofmann, May 07 2022

Keywords

Examples

			  A048785(0) = 0
+ A048785(1) = 1
+ A048785(2) = 4
+ A048785(3) = 4
------------------
= A353551(3) = 9
		

Crossrefs

Partial sums of A048785.
Cf. A000005, A006218, A061503 (squares).

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 0, a(n-1)+numtheory[tau](n^3)) end:
    seq(a(n), n=0..100);  # Alois P. Heinz, May 08 2022
  • Mathematica
    Accumulate[Join[{0}, Table[DivisorSigma[0, k^3], {k, 1, 50}]]] (* Amiram Eldar, May 08 2022 *)
  • PARI
    a(n) = sum(k=1, n, numdiv(k^3)); \\ Michel Marcus, May 08 2022
    
  • Python
    from sympy import divisor_count
    def A048785(n): return divisor_count(n**3)
    def A353551(n): return sum(A048785(n) for n in range(1, n))
    print([A353551(n) for n in range(1, 58)])
    
  • Python
    from math import prod
    from sympy import factorint
    def A353551(n): return sum(prod(3*e+1 for e in factorint(k).values()) for k in range(1,n+1)) # Chai Wah Wu, May 10 2022

Formula

a(n) = Sum_{k=1..n} tau(k^3).
a(n) = a(n-1) + A048785(n) for n >= 1, a(0) = 0.

A294072 Number of noncube divisors of n^3.

Original entry on oeis.org

0, 2, 2, 4, 2, 12, 2, 6, 4, 12, 2, 22, 2, 12, 12, 8, 2, 22, 2, 22, 12, 12, 2, 32, 4, 12, 6, 22, 2, 56, 2, 10, 12, 12, 12, 40, 2, 12, 12, 32, 2, 56, 2, 22, 22, 12, 2, 42, 4, 22, 12, 22, 2, 32, 12, 32, 12, 12, 2, 100, 2, 12, 22, 12, 12, 56, 2, 22, 12, 56, 2, 58, 2, 12, 22, 22, 12, 56, 2, 42, 8, 12, 2, 100, 12
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 07 2018

Keywords

Comments

All terms are even. a(n)=2 if and only if n is prime. - Robert Israel, Jan 16 2020

Examples

			a(4) = 4 because 4^3 = 64 has 7 divisors {1, 2, 4, 8, 16, 32, 64} among which 4 divisors {2, 4, 16, 32} are noncubes.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local F;
      F:= map(t -> t[2],ifactors(n)[2]);
      mul(1+3*t,t=F) - mul(1+t,t=F)
    end proc:
    map(f, [$1..100]; # Robert Israel, Jan 16 2020
  • Mathematica
    nmax = 85; Rest[CoefficientList[Series[Sum[(3^PrimeNu[k] - 1) x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    a[n_] := Length[Select[Divisors[n], ! IntegerQ[#^(1/3)] &]]; Table[a[n^3], {n, 1, 85}]
    Table[DivisorSigma[0, n^3] - DivisorSigma[0, n], {n, 1, 85}]

Formula

G.f.: Sum_{k>=1} (3^omega(k) - 1)*x^k/(1 - x^k), where omega(k) is the number of distinct primes dividing k (A001221).
a(n) = [x^(n^3)] Sum_{k>=1} x^A007412(k)/(1 - x^A007412(k)).
a(n) = A291208(A000578(n)).
a(n) = A048785(n) - A000005(n).

A325339 Number of divisors of n^3 that are <= n.

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 2, 4, 3, 6, 2, 8, 2, 6, 5, 5, 2, 9, 2, 8, 5, 6, 2, 11, 3, 6, 4, 8, 2, 17, 2, 6, 6, 6, 5, 14, 2, 6, 6, 11, 2, 17, 2, 9, 8, 6, 2, 15, 3, 10, 6, 9, 2, 13, 5, 11, 6, 6, 2, 26, 2, 6, 8, 7, 5, 18, 2, 10, 6, 17, 2, 18, 2, 6, 9, 10, 5, 19, 2, 14, 5
Offset: 1

Views

Author

Clark Kimberling, Apr 21 2019

Keywords

Examples

			a(10) counts these 6 divisors: 1,2,4,5,8,10.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Divisors[n^3], # <= n &]], {n, 1, 120}]
  • PARI
    a(n) = sumdiv(n^3, d, d <= n); \\ Michel Marcus, Apr 22 2019
Previous Showing 21-24 of 24 results.