cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A137408 Triangular sequence from coefficients of a switched even -odd polynomial recursion: odd:p(x,n)=2*x*p(x, n - 1) - p(x, n - 2); even:p(x,n)=(1 - 2*x)*p(x, n - 1) - p(x, n - 2);.

Original entry on oeis.org

1, 0, 2, -1, 2, -4, 0, -4, 4, -8, 1, -6, 16, -16, 16, 0, 6, -16, 40, -32, 32, -1, 12, -44, 88, -128, 96, -64, 0, -8, 40, -128, 208, -288, 192, -128, 1, -20, 100, -296, 592, -800, 832, -512, 256, 0, 10, -80, 328, -800, 1472, -1792, 1792, -1024, 512, -1
Offset: 1

Views

Author

Roger L. Bagula, Apr 14 2008

Keywords

Comments

A048788 gives the row sums: {1, 2, -3, -8, 11, 30, -41, -112, 153, 418, -571}

Examples

			{1},
{0, 2},
{-1, 2, -4},
{0, -4, 4, -8},
{1, -6, 16, -16,16},
{0, 6, -16, 40, -32, 32},
{-1, 12, -44, 88, -128, 96, -64},
{0, -8, 40, -128, 208, -288, 192, -128},
{1, -20, 100, -296, 592, -800, 832, -512, 256},
{0,10, -80, 328, -800,1472, -1792, 1792, -1024, 512},
{-1, 30, -200, 784, -2048, 3872, -5568, 5888, -4864, 2560, -1024}
		

Crossrefs

Cf. A048788.

Programs

  • Mathematica
    Clear[p, x, a] p[x, -1] = 0; p[x, 0] = 1; p[x, 1] = 2*x; p[x_, n_] := p[x, n] = If[Mod[n, 2] == 1, 2*x*p[x, n - 1] - p[x, n - 2], (1 - 2*x)*p[x, n - 1] - p[x, n - 2]]; Table[ExpandAll[p[x, n]], {n, 0, 10}]; a = Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[a]

Formula

p(x,-1)=0;p(x,0)=1;p(x,1]=2*x; odd:p(x,n)=2*x*p(x, n - 1) - p(x, n - 2); even:p(x,n)=(1 - 2*x)*p(x, n - 1) - p(x, n - 2);

A142880 a(n) = 7*a(n-3) - a(n-6).

Original entry on oeis.org

0, 1, 2, 3, 8, 13, 21, 55, 89, 144, 377, 610, 987, 2584, 4181, 6765, 17711, 28657, 46368, 121393, 196418, 317811, 832040, 1346269, 2178309, 5702887, 9227465, 14930352, 39088169, 63245986, 102334155, 267914296, 433494437, 701408733, 1836311903
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 28 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[1] = 1;
    a[n_] := a[n] = If[Mod[n, 3] == 1, 2*a[n - 1] + a[n - 2], If[Mod[n, 3] == 0, a[n - 1] + a[n - 2], 2*a[n - 1] - a[n - 2]]];
    Table[a[n], {n, 0, 50}]
    LinearRecurrence[{0,0,7,0,0,-1},{0,1,2,3,8,13},40] (* Harvey P. Dale, Jul 17 2021 *)

Formula

G.f.: -x*(1+x)*(x^3 - 2*x^2 - x - 1) / ( 1 - 7*x^3 + x^6 ).
a(3n) = A033888(n).
a(3n+1) = A033890(n).
a(3n+2)= A033891(n).
a(n) = 2*a(n-1) + a(n-2) if n == 1 (mod 3).
a(n) = a(n-1) + a(n-2) if n == 0 (mod 3).
a(n) = 2*a(n-1) - a(n-2) if n == 2 (mod 3).
Previous Showing 11-12 of 12 results.