A137408 Triangular sequence from coefficients of a switched even -odd polynomial recursion: odd:p(x,n)=2*x*p(x, n - 1) - p(x, n - 2); even:p(x,n)=(1 - 2*x)*p(x, n - 1) - p(x, n - 2);.
1, 0, 2, -1, 2, -4, 0, -4, 4, -8, 1, -6, 16, -16, 16, 0, 6, -16, 40, -32, 32, -1, 12, -44, 88, -128, 96, -64, 0, -8, 40, -128, 208, -288, 192, -128, 1, -20, 100, -296, 592, -800, 832, -512, 256, 0, 10, -80, 328, -800, 1472, -1792, 1792, -1024, 512, -1
Offset: 1
Examples
{1}, {0, 2}, {-1, 2, -4}, {0, -4, 4, -8}, {1, -6, 16, -16,16}, {0, 6, -16, 40, -32, 32}, {-1, 12, -44, 88, -128, 96, -64}, {0, -8, 40, -128, 208, -288, 192, -128}, {1, -20, 100, -296, 592, -800, 832, -512, 256}, {0,10, -80, 328, -800,1472, -1792, 1792, -1024, 512}, {-1, 30, -200, 784, -2048, 3872, -5568, 5888, -4864, 2560, -1024}
Crossrefs
Cf. A048788.
Programs
-
Mathematica
Clear[p, x, a] p[x, -1] = 0; p[x, 0] = 1; p[x, 1] = 2*x; p[x_, n_] := p[x, n] = If[Mod[n, 2] == 1, 2*x*p[x, n - 1] - p[x, n - 2], (1 - 2*x)*p[x, n - 1] - p[x, n - 2]]; Table[ExpandAll[p[x, n]], {n, 0, 10}]; a = Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[a]
Formula
p(x,-1)=0;p(x,0)=1;p(x,1]=2*x; odd:p(x,n)=2*x*p(x, n - 1) - p(x, n - 2); even:p(x,n)=(1 - 2*x)*p(x, n - 1) - p(x, n - 2);
Comments