cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A050670 Primes p such that number of primes produced according to rules stipulated in Honaker's A048853 is 8.

Original entry on oeis.org

13, 103, 127, 173, 223, 257, 307, 317, 337, 367, 383, 397, 401, 419, 449, 461, 463, 491, 499, 557, 563, 577, 601, 613, 643, 647, 653, 673, 677, 683, 709, 739, 823, 829, 853, 887, 907, 967, 1033, 1063, 1087, 1103, 1163, 1213, 1217, 1223, 1277, 1307
Offset: 1

Views

Author

Patrick De Geest, Jul 15 1999

Keywords

Examples

			Altering a(1)=13 gives 8 primes: 23, 43, 53, 73, 83, 11, 17 and 19.
		

Crossrefs

A050671 Primes p such that number of primes produced according to rules stipulated in Honaker's A048853 is 9.

Original entry on oeis.org

131, 137, 163, 167, 193, 199, 263, 283, 347, 431, 641, 757, 827, 883, 947, 997, 1021, 1051, 1061, 1109, 1151, 1187, 1193, 1237, 1259, 1279, 1283, 1289, 1453, 1549, 1583, 1627, 1637, 1663, 1669, 1823, 1867, 1901, 1907, 1997, 2003, 2029, 2083, 2099, 2339
Offset: 1

Views

Author

Patrick De Geest, Jul 15 1999

Keywords

Examples

			Altering a(1)=131 gives 9 primes: 331, 431, 631, 101, 151, 181, 191, 137 and 139.
		

Crossrefs

A192545 Numbers such that all numbers are composite when replacing exactly one digit with another, except the leading digit with zero.

Original entry on oeis.org

200, 202, 204, 205, 206, 208, 320, 322, 324, 325, 326, 328, 510, 512, 514, 515, 516, 518, 530, 532, 534, 535, 536, 538, 620, 622, 624, 625, 626, 628, 840, 842, 844, 845, 846, 848, 890, 892, 894, 895, 896, 898, 1070, 1072, 1074, 1075, 1076, 1078, 1130, 1132
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 05 2011

Keywords

Comments

A048853(a(n)) = 0;
Intersection of this sequence and A000040 is A158124. - Evgeny Kapun, Dec 13 2016
If the last digit of an element is 0, 2, 4, 5, 6 or 8, then replacing it with 0, 2, 4, 5, 6 or 8 also yields an element. - David A. Corneth and corrected by Evgeny Kapun, Dec 13 2016

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a192545 n = a192545_list !! (n-1)
    a192545_list = map (+ 1) $ elemIndices 0 $ map a048853 [1..]
  • Mathematica
    Select[Range@ 1200, Function[w, Total@ Boole@ Flatten@ Map[Function[d, PrimeQ@ FromDigits@ ReplacePart[w, d -> #] & /@ If[d == 1, #, Prepend[#, 0]] &@ Range@ 9], Range@ Length@ w] == 0]@ IntegerDigits@ # &] (* Michael De Vlieger, Dec 13 2016 *)
Previous Showing 21-23 of 23 results.