cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A270796 The prime/nonprime compound sequence BBA.

Original entry on oeis.org

8, 10, 15, 20, 27, 32, 38, 40, 49, 58, 63, 72, 78, 82, 88, 99, 110, 114, 121, 125, 129, 140, 146, 155, 166, 172, 175, 183, 185, 189, 212, 217, 225, 230, 245, 248, 258, 265, 272, 279, 289, 292, 306, 309, 315, 319, 334, 355, 360, 362, 368, 375, 377, 393, 402, 408, 416, 420, 427, 435, 438, 452, 473, 478, 482, 486, 507
Offset: 1

Views

Author

N. J. A. Sloane, Mar 30 2016

Keywords

Crossrefs

Let A = primes A000040, B = nonprimes A018252. The 2-level compounds are AA = A006450, AB = A007821, BA = A078782, BB = A102615. The 3-level compounds AAA, AAB, ..., BBB are A038580, A049078, A270792, A102617, A270794, A270796, A102216.

Programs

  • Maple
    # For Maple code for the prime/nonprime compound sequences (listed in cross-references) see A003622.  - N. J. A. Sloane, Mar 30 2016

A236542 Array T(n,k) read along descending antidiagonals: row n contains the primes with n steps in the prime index chain.

Original entry on oeis.org

2, 7, 3, 13, 17, 5, 19, 41, 59, 11, 23, 67, 179, 277, 31, 29, 83, 331, 1063, 1787, 127, 37, 109, 431, 2221, 8527, 15299, 709, 43, 157, 599, 3001, 19577, 87803, 167449, 5381, 47, 191, 919, 4397, 27457, 219613, 1128889, 2269733, 52711
Offset: 1

Views

Author

R. J. Mathar, Jan 28 2014

Keywords

Comments

Row n contains the primes A000040(j) for which A049076(j) = n.

Examples

			The array starts:
    2,    7,   13,   19,   23,   29,   37,   43,   47,   53,...
    3,   17,   41,   67,   83,  109,  157,  191,  211,  241,...
    5,   59,  179,  331,  431,  599,  919, 1153, 1297, 1523,...
   11,  277, 1063, 2221, 3001, 4397, 7193, 9319,10631,12763,...
   31, 1787, 8527,19577,27457,42043,72727,96797,112129,137077,...
		

Crossrefs

Cf. A007821 (row 1), A049078 (row 2), A049079 (row 3), A007097 (column 1), A058010 (diagonal), A057456 - A057457 (columns), A135044, A236536.

Programs

  • Maple
    A236542 := proc(n,k)
        option remember ;
        if n = 1 then
            A007821(k) ;
        else
            ithprime(procname(n-1,k)) ;
        end if:
    end proc:
    for d from 2 to 10 do
        for k from d-1 to 1 by -1 do
                printf("%d,",A236542(d-k,k)) ;
        end do:
    end do:
  • Mathematica
    A007821 = Prime[Select[Range[15], !PrimeQ[#]&]];
    T[n_, k_] := T[n, k] = If[n == 1, If[k <= Length[A007821], A007821[[k]], Print["A007821 must be extended"]; Abort[]], Prime[T[n-1, k]]];
    Table[T[n-k+1, k], {n, 1, 9}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Apr 16 2020 *)

Formula

T(1,k) = A007821(k).
T(n,k) = prime( T(n-1,k) ), n>1 .

A050436 Third-order composites.

Original entry on oeis.org

16, 21, 25, 26, 28, 33, 36, 38, 39, 42, 48, 49, 50, 52, 55, 56, 57, 60, 64, 68, 69, 70, 72, 74, 77, 78, 80, 84, 87, 88, 90, 93, 94, 95, 98, 100, 104, 105, 106, 110, 111, 115, 117, 118, 119, 121, 122, 124, 125, 126, 130, 133, 135, 138, 140, 141, 145, 146, 147
Offset: 1

Views

Author

Michael Lugo (mlugo(AT)thelabelguy.com), Dec 22 1999

Keywords

Examples

			C(C(C(8))) = C(C(15)) = C(25) = 38. So 38 is in the sequence.
		

Crossrefs

Programs

  • Maple
    C := remove(isprime,[$4..1000]): seq(C[C[C[C[n]]]],n=1..100);
  • Mathematica
    Nest[Values@ KeySelect[MapIndexed[First@ #2 -> #1 &, #], CompositeQ] &, Select[Range@ 150, CompositeQ], 2] (* Michael De Vlieger, Jul 22 2017 *)

Formula

Let C(n) be the n-th composite number, with C(1)=4. Then these are numbers C(C(C(n))).

Extensions

More terms from Asher Auel Dec 15 2000

A135044 a(1)=1, then a(c) = p and a(p) = c, where c = T_c(r,k) and p = T_p(r,k), and where T_p contains the primes arranged in rows by the prime index chain and T_c contains the composites arranged in rows by the order of compositeness. See Formula.

Original entry on oeis.org

1, 4, 9, 2, 16, 7, 6, 13, 3, 19, 26, 17, 8, 23, 41, 5, 12, 67, 10, 29, 59, 37, 14, 83, 179, 11, 43, 331, 20, 47, 39, 109, 277, 157, 53, 431, 22, 1063, 31, 191, 15, 2221, 27, 61, 211, 71, 30, 599, 1787, 919, 241, 3001, 35, 73, 8527, 127, 1153, 79, 21, 19577, 44, 89, 283
Offset: 1

Views

Author

Katarzyna Matylla, Feb 11 2008

Keywords

Comments

Exchanges primes with composites, primeth primes with composith composites, etc.
Exchange the k-th prime of order j with the k-th composite of order j and vice versa.
Self-inverse permutation of positive integers.
If n is the composite number A236536(r,k), then a(n) is the corresponding prime A236542(r,k) at the same position (r,k). Vice versa, if n is the prime A236542(r,k), then a(n) is the corresponding composite A236536(r,k) at the same position. - Andrew Weimholt, Jan 28 2014
The original name for this entry did not produce this sequence, but instead A236854, which differs from this permutation for the first time at n=8, where A236854(8)=23, while here a(8)=13. - Antti Karttunen, Feb 01 2014

Examples

			From _Andrew Weimholt_, Jan 29 2014: (Start)
More generally, takes the primes organized in an array according to the sieving process described in the Fernandez paper:
        Row[1](n) = 2, 7, 13, 19, 23, ...
        Row[2](n) = 3, 17, 41, 67, 83, ...
        Row[3](n) = 5, 59, 179, ...
        Row[4](n) = 11, 277, ...
        Lets call this  T_p (n, k)
Also take the composites organized in a similar manner, except we use "composite" numbered positions in our sieve:
        Row[1](n) = 4, 6, 8, 10, 14, 20, 22, ...
        Row[2](n) = 9, 12, 15, 18, 24, ...
        Row[3](n) = 16, 21, 25, ...
        Lets call this T_c (n, k)
If we now take the natural numbers and swap each number (except for 1) with the number which holds the same spot in the other array, then we get the sequence: 1, 4, 9, 2, 16, 7, 6, 13, with for example a(8) = 13 (13 holds the same position in the 'prime' table as 8 does in the 'composite' table). (End)
		

Crossrefs

Programs

  • Maple
    A135044 := proc(n)
        if n = 1 then
            1;
        elif isprime(n) then
            idx := -1 ;
            for r from 1 do
                for c from 1 do
                    if A236542(r,c) = n then
                        idx := [r,c] ;
                    end if;
                    if A236542(r,c) >= n then
                        break;
                    end if;
                end do:
                if type(idx,list)  then
                    break;
                end if;
            end do:
            A236536(r,c) ;
        else
            idx := -1 ;
            for r from 1 do
                for c from 1 do
                    if A236536(r,c) = n then
                        idx := [r,c] ;
                    end if;
                    if A236536(r,c) >= n then
                        break;
                    end if;
                end do:
                if type(idx,list)  then
                    break;
                end if;
            end do:
            A236542(r,c) ;
        end if;
    end proc: # R. J. Mathar, Jan 28 2014
  • Mathematica
    Composite[n_Integer] := Block[{k = n + PrimePi@n + 1}, While[k != n + PrimePi@k + 1, k++ ]; k]; Compositeness[n_] := Block[{c = 1, k = n}, While[ !(PrimeQ@k || k == 1), k = k - 1 - PrimePi@k; c++ ]; c]; Primeness[n_] := Block[{c = 1, k = n}, While[ PrimeQ@k, k = PrimePi@k; c++ ]; c];
    ckj[k_, j_] := Select[ Table[Composite@n, {n, 10000}], Compositeness@# == j &][[k]]; pkj[k_, j_] := Select[ Table[Prime@n, {n, 3000}], Primeness@# == j &][[k]]; f[0]=0; f[1] = 1;
    f[n_] := If[ PrimeQ@ n, pn = Primeness@n; ckj[ Position[ Select[ Table[ Prime@ i, {i, 150}], Primeness@ # == pn &], n][[1, 1]], pn], cn = Compositeness@n; pkj[ Position[ Select[ Table[ Composite@ i, {i, 500}], Compositeness@ # == cn &], n][[1, 1]], cn]]; Array[f, 64] (* Robert G. Wilson v *)

Formula

a(1)=1, a(A236536(r,k))=A236542(r,k), a(A236542(r,k))=A236536(r,k)

Extensions

Edited, corrected and extended by Robert G. Wilson v, Feb 18 2008
Name corrected by Andrew Weimholt, Jan 29 2014

A245815 Permutation of natural numbers induced when A245821 is restricted to nonprime numbers: a(n) = A062298(A245821(A018252(n))).

Original entry on oeis.org

1, 2, 5, 3, 4, 7, 9, 59, 11, 6, 20, 125, 18, 25, 15, 10, 16, 26, 32, 31, 103, 8, 12, 35, 41, 50, 13, 39, 85, 64, 43, 164, 29, 38, 17, 66, 19, 24, 21, 45, 132, 37, 105, 139, 82, 33, 65, 27, 507, 52, 14, 180, 161, 96, 46, 22, 190, 141, 87, 1603, 80, 36, 143, 107, 54, 670, 34, 47, 23, 68, 177, 1337, 40
Offset: 1

Views

Author

Antti Karttunen, Aug 02 2014

Keywords

Comments

This permutation is induced when A245821 is restricted to nonprimes, A018252, the first column of A114537, but equally, when it is restricted to column 2 (A007821), column 3 (A049078), etc. of that square array, or alternatively, to the successive rows of A236542.
The sequence of fixed points f(n) begins as 1, 2, 15, 142, 548, 1694, 54681. A018252(f(n)) gives the nonprime terms of A245823.

Crossrefs

Inverse: A245816.
Related permutations: A245813, A245819, A245821.

Programs

Formula

a(n) = A062298(A245821(A018252(n))).
As a composition of related permutations:
a(n) = A245813(A245819(n)).
Also following holds for all n >= 1:

A245816 Permutation of natural numbers induced when A245822 is restricted to nonprime numbers: a(n) = A062298(A245822(A018252(n))).

Original entry on oeis.org

1, 2, 4, 5, 3, 10, 6, 22, 7, 16, 9, 23, 27, 51, 15, 17, 35, 13, 37, 11, 39, 56, 69, 38, 14, 18, 48, 78, 33, 120, 20, 19, 46, 67, 24, 62, 42, 34, 28, 73, 25, 103, 31, 206, 40, 55, 68, 92, 300, 26, 76, 50, 99, 65, 157, 281, 165, 184, 8, 121, 134, 277, 423, 30, 47, 36, 223, 70, 514, 75, 101, 116, 236, 139, 74
Offset: 1

Views

Author

Antti Karttunen, Aug 02 2014

Keywords

Comments

This permutation is induced when A245822 is restricted to nonprimes, A018252, the first column of A114537, but equally, when it is restricted to column 2 (A007821), column 3 (A049078), etc. of that square array, or alternatively, to the successive rows of A236542.
The sequence of fixed points f(n) begins as 1, 2, 15, 142, 548, 1694, 54681. A018252(f(n)) gives the nonprime terms of A245823.

Crossrefs

Inverse: A245815.
Related permutations: A245814, A245820, A245822.

Programs

Formula

a(n) = A062298(A245822(A018252(n))).
As a composition of related permutations:
a(n) = A245820(A245814(n)).
Also following holds for all n >= 1:
etc.

A102616 Nonprime numbers of order 3.

Original entry on oeis.org

1, 14, 16, 22, 24, 25, 30, 33, 35, 36, 39, 44, 46, 48, 50, 51, 54, 55, 56, 62, 64, 66, 68, 69, 70, 75, 76, 77, 80, 85, 86, 87, 90, 92, 93, 94, 96, 100, 102, 104, 105, 108, 111, 115, 116, 117, 118, 120, 122, 123, 124, 126, 130, 132, 134, 136, 138, 142, 144, 145, 148, 150
Offset: 1

Views

Author

Cino Hilliard, Jan 31 2005

Keywords

Comments

nps(n,1) -> list nonprime(n) or the sequence of nonprime numbers. nps(n,2) -> list nonprime(nonprime(n)) or nps of order 2. nps(n,3) -> list nonprime(nonprime(nonprime(n))) or npcs of order 3 ..... The order is the number of nestings - 1.

Examples

			Nonprime(2) = 4.
Nonprime(4) = 8.
Nonprime(8) = 14, the 2nd entry.
		

Crossrefs

Let A = primes A000040, B = nonprimes A018252. The 2-level compounds are AA = A006450, AB = A007821, BA = A078782, BB = A102615. The 3-level compounds AAA, AAB, ..., BBB are A038580, A049078, A270792, A102617, A270794, A270796, A102216.

Programs

  • Maple
    # For Maple code for the prime/nonprime compound sequences (listed in cross-references) see A003622. - N. J. A. Sloane, Mar 30 2016
  • Mathematica
    nonPrime[n_] := FixedPoint[n + PrimePi[ # ] &, n]; Nest[ nonPrime, Range[62], 3] (* Robert G. Wilson v, Feb 04 2005 *)
  • PARI
    \\ We perform nesting(s) with a loop.
    cics(n,m) = { local(x,y,z); for(x=1,n, z=x; for(y=1,m+1, z=nonprime(z); ); print1(z",") ) }
    nonprime(n) = { local(c,x); c=1; x=0; while(c <= n, x++; if(!isprime(x),c++); ); return(x) }

Extensions

Edited by Robert G. Wilson v, Feb 04 2005

A270795 The prime/nonprime compound sequence BAB.

Original entry on oeis.org

4, 12, 21, 28, 34, 42, 52, 60, 65, 74, 84, 95, 98, 106, 119, 128, 133, 135, 141, 147, 170, 177, 180, 192, 195, 209, 214, 220, 231, 246, 250, 253, 284, 288, 290, 295, 301, 316, 323, 329, 336, 339, 351, 365, 382, 387, 390, 394, 417, 429, 432, 445, 462, 470, 474, 481, 490, 505, 516, 518, 532, 538, 543, 550, 559, 566
Offset: 1

Views

Author

N. J. A. Sloane, Mar 30 2016

Keywords

Crossrefs

Let A = primes A000040, B = nonprimes A018252. The 2-level compounds are AA = A006450, AB = A007821, BA = A078782, BB = A102615. The 3-level compounds AAA, AAB, ..., BBB are A038580, A049078, A270792, A102617, A270794, A270796, A102216.

Programs

  • Maple
    # For Maple code for the prime/nonprime compound sequences (listed in cross-references) see A003622.  - N. J. A. Sloane, Mar 30 2016

A064960 The prime then composite recurrence; a(2n) = a(2n-1)-th prime and a(2n+1) = a(2n)-th composite and a(1) = 1.

Original entry on oeis.org

1, 2, 6, 13, 22, 79, 108, 593, 722, 5471, 6290, 62653, 69558, 876329, 951338, 14679751, 15692307, 289078661, 305618710, 6588286337, 6908033000, 171482959009, 178668550322, 5040266614919, 5225256019175, 165678678591359, 171068472492228, 6039923990345039
Offset: 1

Views

Author

Robert G. Wilson v, Oct 29 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Composite[n_Integer] := FixedPoint[n + PrimePi[ # ] + 1 &, n + PrimePi[n] + 1]; a = {1}; b = 1; Do[ If[ !PrimeQ[b], b = Prime[b], b = Composite[b]]; a = Append[a, b], {n, 1, 23}]; a
  • Python
    from functools import cache
    from sympy import prime, composite
    @cache
    def A064960(n): return 1 if n == 1 else composite(A064960(n-1)) if n % 2 else prime(A064960(n-1)) # Chai Wah Wu, Jan 01 2022

Extensions

a(26)-a(28) from Chai Wah Wu, May 07 2018

A064961 Composite-then-prime recurrence; a(2n) = a(2n-1)-th composite and a(2n+1) = a(2n)-th prime and a(1) = 1.

Original entry on oeis.org

1, 4, 7, 14, 43, 62, 293, 366, 2473, 2892, 26317, 29522, 344249, 376259, 5429539, 5831545, 101291779, 107457490, 2198218819, 2310909505, 54720307351, 57128530327, 1543908890351, 1603146693999, 48871886538151, 50527531769529, 1720466016680911, 1772475453490311
Offset: 1

Views

Author

Robert G. Wilson v, Oct 29 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Composite[n_Integer] := FixedPoint[n + PrimePi[ # ] + 1 &, n + PrimePi[n] + 1]; a = {1, 4}; b = 4; Do[ If[ !PrimeQ[b], b = Prime[b], b = Composite[b]]; a = Append[a, b], {n, 1, 23}]; a

Extensions

a(24)-a(26) corrected and a(27)-a(28) added by Chai Wah Wu, Aug 22 2018
Previous Showing 21-30 of 33 results. Next