cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A049603 (1+e)-sigma perfect numbers: (1+e) - sigma(x) = 2*x.

Original entry on oeis.org

6, 28, 264, 1104, 3360, 75840, 6499584, 151062912, 2171581440, 4686409728, 316023611904
Offset: 1

Views

Author

Keywords

Comments

The function (1+e) - sigma(n) is defined in A051378. This sequence lists solutions to A051378(n) = 2*n.
a(12) > 10^12. - Giovanni Resta, Jun 12 2016

Examples

			Factorizations: 2*3, 2^2*7, 2^3*3*11, 2^4*3*23, 2^5*3*5*7, 2^6*3*5*79, 2^8*3^2*7*13*31, 2^7*3^2*7*11*13*131, 2^10*3*5*7*19*1063.
		

Crossrefs

Programs

  • Mathematica
    (* Assuming all terms greater than 28 are multiple of 24 *) ok[n_] := 2*n == Times @@ (1 + Sum[First[#]^s, {s, Divisors[Last[#]]}] & ) /@ FactorInteger[n]; Reap[For[n = 2, n <= 2171581440, n = n + If[n < 48, 1, 24], If[ok[n], Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jun 26 2012 *)

Extensions

151062912 inserted by Jean-François Alcover, Jun 26 2012
a(10)-a(11) from Giovanni Resta, Jun 12 2016

A383863 The number of divisors d of n having the property that for every prime p dividing n the p-adic valuation of d is either 0 or a unitary divisor of the p-adic valuation of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 3, 3, 4, 2, 6, 2, 4, 4, 3, 2, 6, 2, 6, 4, 4, 2, 6, 3, 4, 3, 6, 2, 8, 2, 3, 4, 4, 4, 9, 2, 4, 4, 6, 2, 8, 2, 6, 6, 4, 2, 6, 3, 6, 4, 6, 2, 6, 4, 6, 4, 4, 2, 12, 2, 4, 6, 5, 4, 8, 2, 6, 4, 8, 2, 9, 2, 4, 6, 6, 4, 8, 2, 6, 3, 4, 2, 12, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, May 12 2025

Keywords

Comments

First differs from A073184 at n = 64.
First differs from A383865 at n = 256.
The number of divisors d of n such that each is a unitary divisor of an exponential unitary divisor of n (see A361255).
Analogous to the number of (1+e)-divisors (A049599) as exponential unitary divisors (A361255, A278908) are analogous to exponential divisors (A322791, A049419).
The sum of these divisors is A383864(n).
Also, the number of divisors d of n having the property that for every prime p dividing n the p-adic valuation of d is either 0 or a squarefree divisor of the p-adic valuation of n. The sum of these divisors is A383867(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 2^PrimeNu[e] + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> 1 + 1 << omega(x), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = 1 + 2^A001221(e) = 1 + A034444(e).
a(n) <= A049599(n), with equality if and only if n is an exponentially squarefree number (A209061).

A053784 Harmonic means of (1+e)-divisors of (1+e)-harmonic numbers.

Original entry on oeis.org

1, 2, 3, 5, 6, 9, 9, 10, 11, 15, 15, 14, 8, 9, 17, 17, 12, 21, 19, 16, 14, 18, 29, 26, 29, 21, 20, 17, 24, 28, 22, 27, 39, 24, 30, 42, 23, 42, 48, 33, 26, 54, 41, 35, 37, 36, 34, 39, 31, 44, 40, 36, 38, 46, 51, 55, 77, 41, 60, 77, 54, 57, 88, 47, 43, 45, 46, 99
Offset: 1

Views

Author

Naohiro Nomoto, Apr 14 2001

Keywords

Comments

If n = Product p(i)^r(i), d = Product p(i)^s(i) and s(i) = 0 or s(i) divides r(i), then d is a (1+e)-divisor of n.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (DivisorSigma[0, e] + 1)/(p^e + DivisorSum[e, p^(e - #) &]); h[n_] := n*Times @@ (f @@@ FactorInteger[n]); Select[h /@ Range[10^5], IntegerQ] (* Amiram Eldar, Sep 07 2019*)

Extensions

More terms from Amiram Eldar, Sep 07 2019

A349281 a(n) is the number of prime powers (not including 1) that are (1+e)-divisors of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 3, 2, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 4, 1, 2, 2, 3, 1, 3, 1, 3, 3, 2, 1, 4, 2, 3, 2, 3, 1, 3, 2, 3, 2, 2, 1, 4, 1, 2, 3, 4, 2, 3, 1, 3, 2, 3, 1, 4, 1, 2, 3, 3, 2, 3, 1, 4, 3, 2, 1, 4, 2, 2, 2, 3, 1, 4, 2, 3, 2, 2, 2, 3, 1, 3, 3, 4, 1, 3, 1, 3, 3
Offset: 1

Views

Author

Amiram Eldar, Nov 13 2021

Keywords

Comments

(1+e)-divisors are defined in A049599.
First differs from A106490 at n = 64.
The total number of prime powers (not including 1) that divide n is A001222(n).
If p|n and p^e is the highest power of p that divides n, then the powers of p that are (1+e)-divisors of n are of the form p^d where d|e.

Examples

			8 has 3 (1+e)-divisors, 1, 2 and 8. Two of these divisors, 2 and 8 = 2^3 are prime powers. Therefore, a(8) = 2.
		

Crossrefs

Programs

  • Mathematica
    f[p_,e_] := DivisorSigma[0, e]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a,100]
  • PARI
    A349281(n) = vecsum(apply(e->numdiv(e),factor(n)[,2])); \\ Antti Karttunen, Nov 13 2021

Formula

Additive with a(p^e) = A000005(e).
a(n) <= A001222(n), with equality if and only if n is cubefree (A046099).
a(n) <= A049599(n)-1, with equality if and only if n is a prime power (including 1, A000961).
Sum_{k=1..n} a(n) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = Sum_{p prime} f(1/p) = 0.51780076119050171903..., where f(x) = -x + (1-x) * Sum_{k>=1} x^k/(1-x^k). - Amiram Eldar, Sep 29 2023

A383865 The number of divisors d of n having the property that for every prime p dividing n the p-adic valuation of d is either 0 or an infinitary divisor of the p-adic valuation of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 3, 3, 4, 2, 6, 2, 4, 4, 3, 2, 6, 2, 6, 4, 4, 2, 6, 3, 4, 3, 6, 2, 8, 2, 3, 4, 4, 4, 9, 2, 4, 4, 6, 2, 8, 2, 6, 6, 4, 2, 6, 3, 6, 4, 6, 2, 6, 4, 6, 4, 4, 2, 12, 2, 4, 6, 5, 4, 8, 2, 6, 4, 8, 2, 9, 2, 4, 6, 6, 4, 8, 2, 6, 3, 4, 2, 12, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, May 12 2025

Keywords

Comments

First differs from A383863 at n = 256.
The number of divisors d of n such that each is a unitary divisor of an exponential infinitary divisor of n (see A383760).
Analogous to the number of (1+e)-divisors (A049599) as exponential infinitary divisors (A383760, A307848) are analogous to exponential divisors (A322791, A049419).
The sum of these divisors is A383866(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 2^DigitCount[e, 2, 1]; d[1] = 1; d[n_] := Times @@ f @@@ FactorInteger[n]; ff[p_, e_] := d[e] + 1; a[1] = 1; a[n_] := Times @@ ff @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    d(n) = vecprod(apply(x -> 2^hammingweight(x), factor(n)[, 2]));
    a(n) = vecprod(apply(x -> 1 + d(x), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = 1 + A037445(e).
a(n) <= A049599(n), with equality if and only if all the exponents in the prime factorization of n are in A036537.

A053783 (1+e)-harmonic numbers: harmonic mean of (1+e)-divisors is an integer.

Original entry on oeis.org

1, 6, 28, 140, 728, 1638, 2184, 3640, 8008, 8190, 10920, 18620, 23808, 23895, 27846, 37128, 47790, 55860, 69160, 148960, 166656, 189810, 237510, 242060, 316680, 334530, 359600, 406215, 446880, 484120, 525690, 669060, 726180, 1029952, 1078800, 1089270, 1099170
Offset: 1

Views

Author

Naohiro Nomoto, Apr 14 2001

Keywords

Comments

If k = Product p(i)^r(i), d = Product p(i)^s(i) and s(i) = 0 or s(i) divides r(i), then d is a (1+e)-divisor of k.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (DivisorSigma[0, e] + 1)/(p^e + DivisorSum[e, p^(e - #) &]); aQ[n_] := IntegerQ[n * Times @@ (f @@@ FactorInteger[n])]; Select[Range[10^5], aQ] (* Amiram Eldar, Sep 07 2019 *)

Extensions

More terms from Amiram Eldar, Sep 07 2019

A333927 Recursive perfect numbers: numbers k such that A333926(k) = 2*k.

Original entry on oeis.org

6, 28, 264, 1104, 3360, 75840, 151062912, 606557952, 2171581440
Offset: 1

Views

Author

Amiram Eldar, Apr 10 2020

Keywords

Comments

Since a recursive divisor is also a (1+e)-divisor (see A049599), then the first 6 terms and other terms of this sequence coincide with those of A049603.

Examples

			264 is a term since the sum of its recursive divisors is 1 + 2 + 3 + 6 + 8 + 11 + 22 + 24 + 33 + 66 + 88 + 264 = 528 = 2 * 264.
		

Crossrefs

Analogous sequences: A000396, A002827 (unitary), A007357 (infinitary), A054979 (exponential), A064591 (nonunitary).

Programs

  • Mathematica
    recDivQ[n_, 1] = True; recDivQ[n_, d_] := recDivQ[n, d] = Divisible[n, d] && AllTrue[FactorInteger[d], recDivQ[IntegerExponent[n, First[#]], Last[#]] &]; recDivs[n_] := Select[Divisors[n], recDivQ[n, #] &]; f[p_, e_] := 1 + Total[p^recDivs[e]]; recDivSum[1] = 1; recDivSum[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[10^5], recDivSum[#] == 2*# &]

A349284 Numbers k such that A051378(k) > 2*k and A333926(k) <= 2*k.

Original entry on oeis.org

126720, 134400, 149760, 188160, 195840, 456960, 510720, 549120, 618240, 718080, 748800, 779520, 802560, 833280, 940800, 979200, 994560, 1094400, 1102080, 1155840, 1263360, 1324800, 1393920, 1424640, 1585920, 1639680, 1670400, 1785600, 1800960, 1908480, 1946880
Offset: 1

Views

Author

Amiram Eldar, Nov 13 2021

Keywords

Comments

(1+e)-abundant numbers are numbers k such that A051378(k) > 2*k, i.e., numbers k whose sum of (1+e)-divisors exceeds 2*k.
Since all the recursive divisors (see A282446) of a number are also its (1+e)-divisors, the sequence of (1+e)-abundant numbers includes all the recursive abundant numbers (A333928). The first 21387 (1+e)-abundant numbers are also recursive abundant numbers. Therefore, this sequence includes only the (1+e)-abundant numbers that are not recursive abundant numbers.

Examples

			126720 is a term since A051378(126720) = 261144 > 2*126720 = 253440 and A333926(126720) = 246168 < 253440.
		

Crossrefs

Programs

  • Mathematica
    oesigma[1] = 1; oesigma[n_] := Times @@ (1 + Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; recDivQ[n_, 1] = True; recDivQ[n_, d_] := recDivQ[n, d] = Divisible[n, d] && AllTrue[FactorInteger[d], recDivQ[IntegerExponent[n, First[#]], Last[#]] &]; recDivs[n_] := Select[Divisors[n], recDivQ[n, #] &]; f[p_, e_] := 1 + Total[p^recDivs[e]]; recsigma[1] = 1; recsigma[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[10^6], oesigma[#] > 2*# && recsigma[#] <= 2*# &]

A365551 The number of exponentially odd divisors of the smallest exponentially odd number divisible by n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 3, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 2, 6, 4, 4, 2, 6, 3, 4, 3, 6, 2, 8, 2, 4, 4, 4, 4, 9, 2, 4, 4, 6, 2, 8, 2, 6, 6, 4, 2, 8, 3, 6, 4, 6, 2, 6, 4, 6, 4, 4, 2, 12, 2, 4, 6, 5, 4, 8, 2, 6, 4, 8, 2, 9, 2, 4, 6, 6, 4, 8, 2, 8, 4, 4, 2, 12, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Sep 08 2023

Keywords

Comments

First differs from A049599 and A282446 at n = 32, and from A353898 at n = 64.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Ceiling[(e + 3)/2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> ceil((x+3)/2), factor(n)[, 2]));

Formula

a(n) = A322483(A356191(n)).
Multiplicative with a(p^e) = ceiling((e+3)/2).
Dirichlet g.f.: zeta(s) * zeta(2*s) * Product_{p prime} (1 + 1/p^s - 1/p^(3*s)).
From Vaclav Kotesovec, Sep 09 2023: (Start)
Let f(s) = Product_{p prime} (1 - 1/p^(2*s) - 1/p^(3*s) + 1/p^(4*s)).
Dirichlet g.f.: zeta(s)^2 * zeta(2*s) * f(s).
Sum_{k=1..n} a(k) ~ (Pi^2 * f(1) * n / 6) * (log(n) + 2*gamma - 1 + 12*zeta'(2)/Pi^2 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = 0.5358961538283379998085026313185459506482223745141452711510108346133288119...,
f'(1) = f(1) * Sum_{p prime} (-4 + 3*p + 2*p^2) * log(p) / (1 - p - p^2 + p^4) = f(1) * 1.452592479445159559037143959382854734148246511441192913672347667991...
and gamma is the Euler-Mascheroni constant A001620. (End)
Previous Showing 11-19 of 19 results.