cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A052853 A simple grammar.

Original entry on oeis.org

0, 1, 2, 5, 14, 42, 138, 466, 1643, 5919, 21773, 81279, 307483, 1175352, 4534161, 17626999, 68992703, 271641249, 1075144364, 4275274867, 17071822275, 68428152475, 275217386092, 1110375948303, 4492641333003, 18225081419544, 74111194585752, 302040709982249
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Programs

  • Maple
    spec := [S,{C=Prod(Z,B),S=Cycle(C),B=Set(S)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);

Formula

G.f. appears to be -Sum_{j>=1} (phi(j)/j) * log(1-C(x^j)), where phi = A000010 and C is the g.f. of A050383. - Robert Israel, Nov 01 2016

A205773 G.f. satisfies: A(x) = 1/Product_{n>=1} (1 - 3*x^n*A(x^n)).

Original entry on oeis.org

1, 3, 21, 156, 1335, 12153, 116778, 1160715, 11848530, 123420648, 1306709841, 14019657771, 152092615971, 1665531792021, 18386262679557, 204393214435791, 2286101345820933, 25708109998131381, 290490321604346535, 3296566844230833750, 37555644504960139647
Offset: 0

Views

Author

Paul D. Hanna, Jan 31 2012

Keywords

Examples

			G.f.: A(x) = 1 + 3*x + 21*x^2 + 156*x^3 + 1335*x^4 + 12153*x^5 +...
where
A(x) = 1/((1 - 3*x*A(x)) * (1 - 3*x^2*A(x^2)) * (1 - 3*x^3*A(x^3)) *...).
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1/prod(k=1, n, (1-3*x^k*subst(A, x, x^k+x*O(x^n))))); polcoeff(A, n)}

A205774 G.f. satisfies: A(x) = 1/Product_{n>=1} (1 - x^n*A(x^n)^3).

Original entry on oeis.org

1, 1, 5, 27, 177, 1245, 9399, 73659, 595510, 4923724, 41451675, 354071010, 3061018302, 26732084764, 235476740731, 2089770720125, 18666863392846, 167697751329817, 1514206777182411, 13734387733516323, 125083419013852945, 1143367086845429280
Offset: 0

Views

Author

Paul D. Hanna, Jan 31 2012

Keywords

Examples

			 G.f.: A(x) = 1 + x + 5*x^2 + 27*x^3 + 177*x^4 + 1245*x^5 +...
where
A(x) = 1/((1 - x*A(x)^3) * (1 - x^2*A(x^2)^3) * (1 - x^3*A(x^3)^3) *...).
		

Crossrefs

A205775 G.f. satisfies: A(x) = 1/Product_{n>=1} (1 - x^n*A(x^n)^n).

Original entry on oeis.org

1, 1, 3, 8, 26, 79, 276, 936, 3376, 12259, 45648, 171739, 655664, 2524835, 9813259, 38410167, 151332137, 599541153, 2387199083, 9547195445, 38335338712, 154484001619, 624579964260, 2532713370789, 10298393401623, 41979975505800, 171522040764060
Offset: 0

Views

Author

Paul D. Hanna, Jan 31 2012

Keywords

Examples

			 G.f.: A(x) = 1 + x + 3*x^2 + 8*x^3 + 26*x^4 + 79*x^5 + 276*x^6 + 936*x^7 +...
where
A(x) = 1/((1 - x*A(x)) * (1 - x^2*A(x^2)^2) * (1 - x^3*A(x^3)^3) *...).
		

Crossrefs

A308379 E.g.f. A(x) satisfies: A(x) = x * Product_{k>=1} 1/(1 - A(x^k))^(1/k).

Original entry on oeis.org

1, 2, 15, 152, 2255, 40944, 938161, 25026896, 777966129, 27346727600, 1077001807871, 46870231698168, 2235954785893231, 115950345421719704, 6496012991027031585, 390935629387700612384, 25153144712405994085409, 1722934940168892344912928, 125180348349211811174365615
Offset: 1

Views

Author

Ilya Gutkovskiy, May 23 2019

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 19; A[] = 0; Do[A[x] = x Product[1/(1 - A[x^k])^(1/k), {k, 1, terms}] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x] Range[0, terms]! // Rest

Formula

E.g.f. A(x) satisfies: A(x) = x * exp(Sum_{k>=1} Sum_{d|k} A(x^d)^(k/d) / k).

A329802 G.f. A(x) satisfies: A(x) = 1 / (1 - x * Product_{k>=1} A(x^k)).

Original entry on oeis.org

1, 1, 2, 6, 19, 64, 219, 777, 2803, 10315, 38496, 145516, 555764, 2142060, 8320207, 32538518, 128012533, 506300507, 2011932479, 8028941336, 32163411045, 129291553211, 521372223648, 2108522273338, 8549844313915, 34753397386201, 141584261960345
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 21 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 26; A[] = 0; Do[A[x] = 1/(1 - x Product[A[x^k], {k, 1, nmax}]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Previous Showing 11-16 of 16 results.