cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A322915 Numbers k such that 301*2^k+1 is prime.

Original entry on oeis.org

4, 184, 344, 352, 392, 1060, 2452, 7360, 9736, 10324, 21316, 22752, 27272, 27744, 28068, 55628, 72864, 88472, 95872, 124628, 218584, 424448, 517960, 880792, 1455620, 3284232
Offset: 1

Views

Author

Robert Price, Dec 30 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[301*2^# + 1] &] (* Robert Price, Dec 30 2018 *)

Extensions

a(26) from Jeppe Stig Nielsen, Dec 20 2024

A322922 Numbers k such that 305*2^k+1 is prime.

Original entry on oeis.org

3, 7, 21, 23, 29, 35, 53, 87, 91, 95, 115, 165, 179, 233, 367, 419, 609, 791, 2937, 3713, 4087, 5071, 6497, 30011, 30783, 32861, 48299, 60155, 143623, 293525, 465959, 567161, 975215, 1024223, 1106333, 1285643, 1597089, 2233655, 2733989, 2840155, 3171039
Offset: 1

Views

Author

Robert Price, Dec 30 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[305*2^# + 1] &] (* Robert Price, Dec 30 2018 *)

Extensions

a(38)-a(39) from Jeppe Stig Nielsen, Dec 27 2019
a(40) from Jeppe Stig Nielsen, Feb 05 2020
a(41) from Jeppe Stig Nielsen, Dec 20 2024

A322945 Numbers k such that 307*2^k+1 is prime.

Original entry on oeis.org

2, 8, 16, 26, 34, 112, 182, 226, 304, 782, 6886, 36422, 647786, 1289306, 2862962
Offset: 1

Views

Author

Robert Price, Dec 31 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[307*2^# + 1] &] (* Robert Price, Dec 31 2018 *)

Extensions

a(15) from Jeppe Stig Nielsen, May 30 2020

A322946 Numbers k such that 311*2^k+1 is prime.

Original entry on oeis.org

9, 29, 35, 105, 125, 131, 179, 359, 2735, 28199, 47349, 64485, 1094135, 1171199, 1323071, 2798459, 3037565, 3270759, 3282455
Offset: 1

Views

Author

Robert Price, Dec 31 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[311*2^# + 1] &] (* Robert Price, Dec 31 2018 *)

Extensions

a(16) from Jeppe Stig Nielsen, Dec 27 2019
a(17)-a(20) from Jeppe Stig Nielsen, Dec 20 2024

A322948 Numbers k such that 313*2^k+1 is prime.

Original entry on oeis.org

4, 10, 16, 24, 70, 184, 250, 432, 460, 792, 8482, 9868, 10954, 14098, 16260, 17770, 19354, 81504, 85672, 158662, 166354, 188914, 327924, 337942, 424318, 519748, 621432, 888288, 1949544, 3716716, 3837304, 3869536
Offset: 1

Views

Author

Robert Price, Dec 31 2018

Keywords

Crossrefs

Programs

  • Maple
    select(n->isprime(313*2^n+1),[$1..1000]); # Muniru A Asiru, Dec 31 2018
  • Mathematica
    Select[Range[1000], PrimeQ[313*2^# + 1] &] (* Robert Price, Dec 31 2018 *)

Extensions

a(30)-a(32) from Jeppe Stig Nielsen, Dec 20 2024

A322950 Numbers k such that 317*2^k+1 is prime.

Original entry on oeis.org

7, 11, 243, 291, 327, 1211, 7331, 26775, 101603, 171071, 284795, 295195, 323871, 589755, 833467, 1047471
Offset: 1

Views

Author

Robert Price, Dec 31 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[317*2^# + 1] &] (* Robert Price, Dec 31 2018 *)

A322951 Numbers k such that 319*2^k+1 is prime.

Original entry on oeis.org

2, 10, 18, 274, 314, 522, 562, 578, 594, 602, 930, 1074, 23826, 184554, 1923378, 2248914, 2290722, 3069362
Offset: 1

Views

Author

Robert Price, Dec 31 2018

Keywords

Crossrefs

Programs

  • Maple
    select(n->isprime(319*2^n+1),[$1..1000]); # Muniru A Asiru, Dec 31 2018
  • Mathematica
    Select[Range[1000], PrimeQ[319*2^# + 1] &] (* Robert Price, Dec 31 2018 *)

Extensions

a(16)-a(17) from Jeppe Stig Nielsen, Feb 25 2020
a(18) from Jeppe Stig Nielsen, Dec 20 2024

A322952 Numbers k such that 321*2^k+1 is prime.

Original entry on oeis.org

1, 5, 32, 68, 109, 128, 133, 212, 241, 653, 776, 1339, 1787, 2659, 6388, 6547, 8365, 16699, 62861, 64795, 83227, 195376, 278875, 442480, 542876, 730321, 1168576, 1257859, 1629307, 4715725
Offset: 1

Views

Author

Robert Price, Dec 31 2018

Keywords

Crossrefs

Programs

  • Maple
    select(n->isprime(321*2^n+1),[$1..1000]); # Muniru A Asiru, Dec 31 2018
  • Mathematica
    Select[Range[1000], PrimeQ[321*2^# + 1] &] (* Robert Price, Dec 31 2018 *)

Extensions

a(30) from Jeppe Stig Nielsen, Dec 20 2024

A322954 Numbers k such that 323*2^k+1 is prime.

Original entry on oeis.org

1, 5, 145, 329, 381, 465, 3121, 4201, 4309, 12669, 13601, 17221, 33601, 41741, 46921, 65745, 80269, 384685, 1072285, 3482789
Offset: 1

Views

Author

Robert Price, Dec 31 2018

Keywords

Crossrefs

Programs

  • Maple
    select(n->isprime(323*2^n+1),[$1..1000]); # Muniru A Asiru, Dec 31 2018
  • Mathematica
    Select[Range[1000], PrimeQ[323*2^# + 1] &] (* Robert Price, Dec 31 2018 *)

Extensions

a(20) from Jeppe Stig Nielsen, Dec 20 2024

A322955 Numbers k such that 325*2^k+1 is prime.

Original entry on oeis.org

2, 14, 18, 32, 42, 72, 144, 174, 282, 318, 828, 1338, 2154, 2750, 4034, 9858, 13692, 49052, 63522, 86784, 117162, 126014, 273090, 302574, 413862, 901902, 3231474, 4097700
Offset: 1

Views

Author

Robert Price, Dec 31 2018

Keywords

Crossrefs

Programs

  • Maple
    select(n->isprime(325*2^n+1),[$1..1000]); # Muniru A Asiru, Dec 31 2018
  • Mathematica
    Select[Range[1000], PrimeQ[325*2^# + 1] &] (* Robert Price, Dec 31 2018 *)

Extensions

a(27)-a(28) from Jeppe Stig Nielsen, Dec 20 2024
Previous Showing 11-20 of 28 results. Next