cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A133321 Inserting any (identical) digit between adjacent digits of an odd semiprime k never yields a prime.

Original entry on oeis.org

15, 25, 35, 55, 65, 85, 95, 115, 121, 143, 145, 155, 185, 187, 205, 215, 235, 253, 265, 295, 299, 305, 335, 341, 355, 365, 393, 395, 411, 415, 437, 445, 451, 473, 485, 505, 515, 535, 545, 565, 583, 635, 655, 671, 679, 685, 695, 717, 745, 755, 781, 785, 815
Offset: 1

Views

Author

Jonathan Vos Post, Oct 18 2007

Keywords

Comments

Odd semiprime analog of A050805. Trivially true for any digit if we substitute "even semiprime" for "odd semiprime." Trivially true for any semiprime which is a multiple of 5 (A001750). The nonmultiples of 5 in this sequence begin 121, 143, 187, 253, 299, 341.

Examples

			121 is in the sequence because 10201, 11211, 12221, 13231, 14241, 15251, 16261, 17271, 18281, 19291 are all composite.
		

Crossrefs

Programs

  • Mathematica
    Select[Select[Range[11,900,2],PrimeOmega[#]==2&],AllTrue[Table[ FromDigits[ Riffle[ IntegerDigits[#],n]],{n,0,9}],CompositeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 07 2018 *)

Extensions

More terms from R. J. Mathar, Oct 22 2007

A050814 Primes p such that inserting any even digit between adjacent digits produces a prime number while inserting any odd digit produces a composite number, or vice versa.

Original entry on oeis.org

5333, 1454969, 1466833, 1790531, 1794343, 1883113, 1984459, 2179993, 2410523, 2567891, 3100301, 3259567, 3424783, 3700153, 3954131, 3972979, 4046671, 4134133, 4280033, 4544641, 4691851, 4692641, 4848523, 5006831, 5118307
Offset: 1

Views

Author

Patrick De Geest, Oct 15 1999

Keywords

Examples

			5333 produces five primes when an even digit is inserted (5030303, 5232323, 5434343, 5636363, 5838383) and five composites when an odd digit is inserted (5131313, 5333333, 5535353, 5737373, 5939393).
		

Crossrefs

Programs

  • Mathematica
    a[n_,k_]:=Union[Boole/@PrimeQ[Table[FromDigits[Riffle[IntegerDigits[n],i]],{i,k+2*Range[0,4]}]]]; t={}; Do[p=Prime[i]; x=a[p,1]; y=a[p,0]; If[x=={0}&&y=={1}||x=={1}&&y=={0},AppendTo[t,p]],{i,100,190000}]; t (* Jayanta Basu, Jun 01 2013 *)

Extensions

Offset changed to 1 by Jon E. Schoenfield, Oct 17 2019
Name clarified by Tanya Khovanova, Jul 06 2021
Previous Showing 21-22 of 22 results.