cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A124304 Riordan array (1, x*(1-x^2)).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, -1, 0, 1, 0, 0, -2, 0, 1, 0, 0, 0, -3, 0, 1, 0, 0, 1, 0, -4, 0, 1, 0, 0, 0, 3, 0, -5, 0, 1, 0, 0, 0, 0, 6, 0, -6, 0, 1, 0, 0, 0, -1, 0, 10, 0, -7, 0, 1, 0, 0, 0, 0, -4, 0, 15, 0, -8, 0, 1, 0, 0, 0, 0, 0, -10, 0, 21, 0, -9, 0, 1, 0, 0, 0, 0, 1, 0, -20, 0, 28, 0, -10, 0, 1
Offset: 0

Views

Author

Paul Barry, Oct 25 2006

Keywords

Comments

T(2n,n) is a signed aerated version of C(2n,n).
Inverse is A124305.

Examples

			Triangle begins
  1;
  0,  1;
  0,  0,  1;
  0, -1,  0,  1;
  0,  0, -2,  0,  1;
  0,  0,  0, -3,  0,  1;
  0,  0,  1,  0, -4,  0,  1;
  0,  0,  0,  3,  0, -5,  0,  1;
  0,  0,  0,  0,  6,  0, -6,  0,  1;
		

Crossrefs

Cf. A014021 (diagonal sums), A050935 (row sums), A124305 (inverse).

Programs

  • Magma
    A124304:= func< n,k | (&+[(-1)^j*Binomial(k,k-j)*Binomial(k,n-k-j) : j in [0..n]]) >;
    [A124304(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Aug 18 2023
    
  • Mathematica
    A124304[n_, k_]:= Binomial[k, (n-k)/2]*(-1)^((n-k)/2)*(1+(-1)^(n-k))/2;
    Table[A124304[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Aug 18 2023 *)
  • SageMath
    def A124304(n, k): return binomial(k, (n-k)//2)*(-1)^((n-k)//2)*(1+(-1)^(n-k))/2
    flatten([[A124304(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Aug 18 2023

Formula

T(n, k) = Sum_{j=0..n} C(k,k-j)*C(k,n-k-j)*(-1)^j.
T(n, k) = C(k,(n-k)/2)*(-1)^((n-k)/2)*(1 + (-1)^(n-k))/2.
Sum_{k=0..n} T(n, k) = A050935(n+2).
Sum_{k=0..floor(n/2)} T(n-k, k) = A014021(n).
T(2*n, n) = (1 - 2*0^(n+2 mod 4))*A126869(n).
From G. C. Greubel, Aug 18 2023: (Start)
T(2*n-1, n-1) = (1 - 2*0^(n+1 mod 4))*A138364(n-1).
T(2*n-1, n+1) = (1 - 2*0^(n mod 4))*((1+(-1)^n)/2)*A002054(floor(n/2)).
Sum_{k=0..n} (-1)^k*T(n, k) = A176971(n+3).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (1 - 2*0^(n+2 mod 4))*A079977(n).
G.f.: 1/(1 - x*y*(1-x^2)). (End)

A126030 Riordan array (1/(1+x^3),x/(1+x^3)).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, -1, 0, 0, 1, 0, -2, 0, 0, 1, 0, 0, -3, 0, 0, 1, 1, 0, 0, -4, 0, 0, 1, 0, 3, 0, 0, -5, 0, 0, 1, 0, 0, 6, 0, 0, -6, 0, 0, 1, -1, 0, 0, 10, 0, 0, -7, 0, 0, 1, 0, -4, 0, 0, 15, 0, 0
Offset: 0

Views

Author

Paul Barry, Dec 15 2006

Keywords

Comments

Inverse is A111373. Row sums are A050935(n+2). Diagonal sums are an alternating sign version of A000931(n+3) with g.f. 1/(1-x^2+x^3).

Examples

			Triangle begins
.1,
.0, 1,
.0, 0, 1,
.-1, 0, 0, 1,
.0, -2, 0, 0, 1,
.0, 0, -3, 0, 0, 1,
.1, 0, 0, -4, 0, 0, 1,
.0, 3, 0, 0, -5, 0, 0, 1,
.0, 0, 6, 0, 0, -6, 0, 0, 1,
.-1, 0, 0, 10, 0, 0, -7, 0, 0, 1,
.0, -4, 0, 0, 15, 0, 0, -8, 0, 0, 1
		

Formula

Number triangle T(n,k)=C(k+(n-k)/3,(n-k)/3)*(-1)^(n-k)*(2*cos(2*pi*(n-k)/3)+1)/3

A109582 Expansion of e.g.f.: -1/(1+x-x^3).

Original entry on oeis.org

-1, 1, -2, 0, 24, -240, 1440, -5040, -40320, 1088640, -14515200, 119750400, 0, -24908083200, 610248038400, -9153720576000, 62768369664000, 1422749712384000, -70426110763008000, 1703031405723648000, -24329020081766400000, -51090942171709440000
Offset: 0

Views

Author

Roger L. Bagula, Jun 29 2005

Keywords

Crossrefs

Programs

  • Maple
    g:=-1/(1+x-x^3):gser:=series(g,x=0,26): -1,seq(n!*coeff(gser,x^n),n=1..22);

Formula

E.g.f.: -1/(1+x-x^3).
a(n) = n!*A104769(n+1). - R. J. Mathar, Aug 20 2021
D-finite with recurrence a(n) +n*a(n-1) -n*(n-1)*(n-2)*a(n-3) = 0. - R. J. Mathar, Aug 20 2021

A121230 First Hadamard-Sylvester matrix self -similar matrix based on the Padovan/ Minimal Pisot 3 X 3 matrix as an 9 X 9 matrix: Characteristic Polynomial:1 - x - x^3 - x^4 - x^5 + 3 x^6 + 2 x^7 - x^9.

Original entry on oeis.org

0, 13, 5, 22, 42, 54, 126, 192, 347, 631, 1056, 1914, 3320, 5814, 10276, 17921, 31549, 55338, 97026, 170454, 298914, 524684, 920815, 1615647, 2835660, 4975898, 8732160, 15324202, 26891432, 47191909, 82815621, 145331022, 255039162
Offset: 1

Views

Author

Roger L. Bagula, Aug 13 2006

Keywords

Comments

As far as I can tell by searching the Internet, this matrix and this approach to sequences is entirely new and unique. The second of these matrices at 81 X 81 gives a new fractal that is Cantor dust like. aa = Table[M[[n, m]]*M[[i, j]], {n, 1, 9 }, {m, 1, 9}, {i, 1, 9}, {j, 1, 9}]; M2 = Flatten[Table[{Flatten[Table[aa[[ n, m]][[1, i]], {n, 1, 9}, {i, 1, 9}]], Flatten[Table[aa[[n, m]][[2, i]], {n, 1, 9}, {i, 1, 9}]], Flatten[Table[aa[[ n, m]][[3, i]], {n, 1, 9}, {i, 1, 9}]], Flatten[Table[aa[[ n, m]][[4, i]], {n, 1, 9}, {i, 1, 9}]], Flatten[Table[aa[[ n, m]][[5, i]], {n, 1, 9}, {i, 1, 9}]], Flatten[Table[aa[[n, m]][[6, i]], {n, 1, 9}, {i, 1, 9}]], Flatten[Table[aa[[ n, m]][[7, i]], {n, 1, 9}, {i, 1, 9}]], Flatten[Table[aa[[ n, m]][[8, i]], {n, 1, 9}, {i, 1, 9}]], Flatten[Table[aa[[ n, m]][[9, i]], {n, 1, 9}, {i, 1, 9}]]}, {m, 1, 9}], 1]; ListDensityPlot[M2, Mesh -> False]

Crossrefs

Cf. A000931.

Programs

  • Mathematica
    Clear[t, M, a, v, a0] t[n_, m_] := {{0, 1, 0}, {0, 0, 1}, {1, 1, 0}}[[n, m]] a0 = Table[t[n, m]*t[i, j], {n, 1, 3}, {m, 1, 3}, {i, 1, 3}, {j, 1, 3}]; M = Flatten[Table[{Flatten[Table[a0[[ n, m]][[1, i]], {n, 1, 3}, {i, 1, 3}]], Flatten[Table[a0[[n, m]][[2, i]], {n, 1, 3}, {i, 1, 3}]], Flatten[Table[a0[[n, m]][[3, i]], {n, 1, 3}, {i, 1, 3}]]}, {m, 1, 3}], 1] v[1] = Table[Fibonacci[n], {n, 0, 8}] v[n_] := v[n] = M.v[n - 1] a = Table[Floor[v[n][[1]]], {n, 1, 50}] Det[M - x*IdentityMatrix[9]] Factor[%] aaa = Table[x /. NSolve[Det[M - x*IdentityMatrix[9]] == 0, x][[n]], {n, 1, 9}] Abs[aaa] a1 = Table[N[a[[n]]/a[[n - 1]]], {n, 7, 50}] ListDensityPlot[M, Mesh -> False]

Formula

M={{0, 0, 0, 0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 1}, { 0, 0, 0, 0, 0, 0, 1, 1, 0}, {0, 1, 0, 0, 0, 0, 0, 1, 0}, { 0, 0, 1, 0, 0, 0, 0, 0, 1}, {1, 1, 0, 0, 0, 0, 1, 1, 0}, { 0, 0, 0, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 1, 0, 0, 0}, { 0, 0, 0, 1, 1, 0, 0, 0, 0}} v[1] = Table[Fibonacci[n], {n, 0, 8}] v[n_] := v[n] = M.v[n - 1] a(n) = v[n][[1]]
G.f.: x^2(13-8x+4x^2+2x^3-2x^4)/((1-2x+x^2-x^3)(1+x-x^3)). a(n) = a(n-1) +a(n-2) +a(n-3) -a(n-4) +a(n-5) -a(n-6). Partial fraction decomposition yield decomposition in terms of A005314 and A050935. [From R. J. Mathar, Nov 26 2008]
Previous Showing 11-14 of 14 results.