cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A146357 Primes p such that continued fraction of (1 + sqrt(p))/2 has period 12 : primes in A146336.

Original entry on oeis.org

103, 127, 239, 263, 479, 887, 1567, 2711, 5743, 5903, 8311, 8447, 10567, 10847, 12391, 14783, 14831, 15887, 18191, 22343, 23447, 28151, 31391, 32359, 40087, 40343, 42703, 53407, 60103, 60623, 64231, 75431, 79943, 81559, 83663, 93503, 114167, 130199, 135119, 141863
Offset: 1

Views

Author

Artur Jasinski, Oct 30 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]],Length[ContinuedFraction[(1+Sqrt[#])/2][[2]]] == 12&] (* Harvey P. Dale, May 18 2017 *)

Extensions

Period length in definition corrected, 103 added, 607 and 2063 removed. - R. J. Mathar, Nov 08 2008
More terms from Amiram Eldar, Mar 30 2020

A146358 Primes p such that continued fraction of (1 + sqrt(p))/2 has period 13: primes in A333640.

Original entry on oeis.org

421, 757, 1021, 1097, 1117, 1301, 1553, 1973, 2069, 2237, 2273, 2789, 2861, 3373, 3461, 3517, 3877, 3917, 4133, 4397, 4481, 5521, 5573, 5717, 6221, 6317, 6637, 6997, 7253, 7517, 8741, 9049, 9173, 9437, 10181, 10949, 11597, 11789, 12497, 15473, 15797, 16141, 18353
Offset: 1

Views

Author

Artur Jasinski, Oct 30 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[2*10^4], PrimeQ[#] && Length[ContinuedFraction[(1+Sqrt[#])/2][[2]]] == 13 &] (* Amiram Eldar, Mar 30 2020 *)
    Select[Prime[Range[2500]],Length[ContinuedFraction[(1+Sqrt[#])/2][[2]]]==13&] (* Harvey P. Dale, Mar 05 2023 *)

Extensions

Definition corrected, 3 terms added. - R. J. Mathar, Nov 08 2008
More terms from Amiram Eldar, Mar 30 2020

A146359 Primes p such that continued fraction of (1 + sqrt(p))/2 has period 14: primes in A146337.

Original entry on oeis.org

179, 251, 307, 347, 467, 587, 683, 1987, 5099, 5683, 7883, 8059, 8707, 12227, 14867, 15083, 15227, 22283, 34883, 40627, 42787, 47819, 50147, 51683, 68147, 73547, 78467, 84523, 84979, 89051, 95219, 104947, 106451, 107699, 132707, 134291, 142811, 149939, 164051
Offset: 1

Views

Author

Artur Jasinski, Oct 30 2008

Keywords

Crossrefs

Programs

  • Maple
    A := proc(n) local c; try c := numtheory[cfrac](1/2+sqrt(n)/2,'periodic,quotients') ; RETURN(nops(c[2]) ); catch: RETURN(-1) end try ; end: isA146337 := proc(n) if A(n) = 14 then RETURN(true); else RETURN(false); fi; end: isA146359 := proc(n) RETURN(isprime(n) and isA146337(n)) ; end: for k from 1 do if isA146359(ithprime(k)) then printf("%d, ",ithprime(k)) ; fi; od: # R. J. Mathar, Nov 08 2008
  • Mathematica
    Select[Range[2*10^4], PrimeQ[#] && Length[ContinuedFraction[(1+Sqrt[#])/2][[2]]] == 14 &] (* Amiram Eldar, Mar 30 2020 *)

Extensions

5813 and 6791 removed, extended beyond 8707 by R. J. Mathar, Nov 08 2008
More terms from Amiram Eldar, Mar 30 2020

A146361 Primes p such that continued fraction of (1 + sqrt(p))/2 has period 16 : primes in A146339.

Original entry on oeis.org

191, 311, 431, 647, 1319, 1487, 2351, 5527, 9431, 19087, 21143, 24359, 27239, 29207, 32183, 34367, 36791, 38711, 41759, 42071, 43063, 43319, 49367, 58271, 58391, 59399, 62327, 65183, 66239, 77543, 82759, 84263, 87407, 90271, 93967, 94463, 97127, 100703, 101063
Offset: 1

Views

Author

Artur Jasinski, Oct 30 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[2*10^4], PrimeQ[#] && Length[ContinuedFraction[(1+Sqrt[#])/2][[2]]] == 16 &] (* Amiram Eldar, Mar 30 2020 *)
    Select[Prime[Range[10000]],Length[ContinuedFraction[(1+Sqrt[#])/2][[2]]]==16&] (* Harvey P. Dale, Apr 12 2025 *)

Extensions

3391 removed - R. J. Mathar, Sep 06 2009
More terms from Amiram Eldar, Mar 30 2020

A050960 Discriminants of real quadratic fields with class number 1 and related continued fraction period length of 11.

Original entry on oeis.org

541, 593, 661, 701, 857, 1061, 1109, 1217, 1237, 1709, 1733, 1949, 2333, 2957, 3677, 3701, 4373, 5237, 5309, 7013, 8693, 9533, 10853, 12437
Offset: 1

Views

Author

N. J. A. Sloane, Jan 04 2000

Keywords

References

  • R. A. Mollin, Quadratics, CRC Press, 1996, Appendix A.

Crossrefs

A050952 Discriminants of real quadratic fields with class number 1 and related continued fraction period length of 3.

Original entry on oeis.org

17, 37, 61, 101, 197, 317, 461, 557, 677, 773, 1877
Offset: 1

Views

Author

N. J. A. Sloane, Jan 04 2000

Keywords

References

  • R. A. Mollin, Quadratics, CRC Press, 1996, Appendix A.

Crossrefs

A050954 Discriminants of real quadratic fields with class number 1 and related continued fraction period length of 5.

Original entry on oeis.org

41, 149, 157, 181, 269, 397, 941, 1013, 2477, 2693, 3533, 4253
Offset: 1

Views

Author

N. J. A. Sloane, Jan 04 2000

Keywords

References

  • R. A. Mollin, Quadratics, CRC Press, 1996, Appendix A.

Crossrefs

A050951 Discriminants of real quadratic fields with class number 1 and related continued fraction period length of 2.

Original entry on oeis.org

3, 6, 11, 21, 38, 77, 83, 93, 227, 237, 437, 453, 1133, 1253
Offset: 1

Views

Author

N. J. A. Sloane, Jan 04 2000

Keywords

References

  • R. A. Mollin, Quadratics, CRC Press, 1996, Appendix A.

Crossrefs

A050953 Discriminants of real quadratic fields with class number 1 and related continued fraction period length of 4.

Original entry on oeis.org

7, 14, 23, 33, 47, 62, 69, 133, 141, 167, 213, 398, 413, 573, 717, 1077, 1293, 1397, 1757, 3053
Offset: 1

Views

Author

N. J. A. Sloane, Jan 04 2000

Keywords

References

  • R. A. Mollin, Quadratics, CRC Press, 1996, Appendix A.

Crossrefs

A050955 Discriminants of real quadratic fields with class number 1 and related continued fraction period length of 6.

Original entry on oeis.org

19, 22, 57, 59, 107, 131, 253, 278, 309, 341, 381, 749, 813, 893, 1893, 2453, 2757, 3317
Offset: 1

Views

Author

N. J. A. Sloane, Jan 04 2000

Keywords

References

  • R. A. Mollin, Quadratics, CRC Press, 1996, Appendix A.

Crossrefs

Previous Showing 11-20 of 34 results. Next