cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A051098 Primes p such that x^58 = -2 has a solution mod p.

Original entry on oeis.org

2, 3, 11, 17, 19, 41, 43, 67, 73, 83, 89, 97, 107, 113, 131, 137, 139, 163, 179, 193, 211, 227, 241, 251, 257, 281, 283, 307, 313, 331, 337, 347, 353, 379, 401, 409, 419, 433, 443, 449, 457, 467, 491, 499, 521, 547, 563, 569, 571, 577, 587, 593, 601, 617, 619, 641, 643, 659, 673, 683, 691, 739, 761, 769, 787, 809, 811, 827, 857, 859, 881, 883, 907, 937, 947, 953, 971, 977, 1009
Offset: 1

Views

Author

Keywords

Comments

Complement of A216774 relative to A000040. - Vincenzo Librandi, Sep 17 2012

Programs

  • Magma
    [p: p in PrimesUpTo(1010) | exists(t){x : x in ResidueClassRing(p) | x^58 eq - 2}]; // Vincenzo Librandi, Sep 16 2012
  • Mathematica
    ok[p_]:= Reduce[Mod[x^58 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[500]], ok] (* Vincenzo Librandi, Sep 16 2012 *)
  • PARI
    /* see A051071 */
    

Extensions

More terms from Joerg Arndt, Jul 27 2011

A051099 Primes p such that x^60 = -2 has a solution mod p.

Original entry on oeis.org

2, 3, 43, 59, 83, 89, 107, 113, 179, 227, 233, 251, 257, 283, 307, 347, 353, 419, 443, 467, 499, 563, 587, 593, 617, 643, 659, 683, 739, 827, 947, 971, 1019, 1049, 1097, 1163, 1187, 1193, 1217, 1259, 1283, 1289, 1307, 1427, 1433, 1459, 1499, 1523, 1553, 1579
Offset: 1

Views

Author

Keywords

Comments

Complement of A216775 relative to A000040. - Vincenzo Librandi, Sep 17 2012

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1600) | exists(t){x : x in ResidueClassRing(p) | x^60 eq - 2}]; // Vincenzo Librandi, Sep 16 2012
  • Mathematica
    ok[p_]:= Reduce[Mod[x^60 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[500]], ok] (* Vincenzo Librandi, Sep 16 2012 *)
  • PARI
    /* see A051071 */
    

Extensions

More terms from Joerg Arndt, Jul 27 2011

A216690 Primes p such that x^4 = -2 has no solution mod p.

Original entry on oeis.org

5, 7, 13, 17, 23, 29, 31, 37, 41, 47, 53, 61, 71, 79, 97, 101, 103, 109, 127, 137, 149, 151, 157, 167, 173, 181, 191, 193, 197, 199, 223, 229, 239, 241, 263, 269, 271, 277, 293, 311, 313, 317, 349, 359, 367, 373, 383, 389, 397
Offset: 1

Views

Author

Vincenzo Librandi, Sep 15 2012

Keywords

Comments

Complement of A051071 relative to A000040.

Crossrefs

Programs

  • Mathematica
    ok[p_]:= Reduce[Mod[x^4 + 2, p] == 0, x, Integers] == False; Select[Prime[Range[100]], ok]

A163184 Primes of the form 8k + 1 dividing 2^j + 1 for some odd j.

Original entry on oeis.org

281, 617, 1033, 1049, 1097, 1193, 1481, 1553, 1753, 1777, 2281, 2393, 2473, 2657, 2833, 2857, 3049, 3529, 3673, 3833, 4049, 4153, 4217, 4273, 4457, 4937, 5113, 5297, 5881, 6121, 6449, 6481, 6521, 6529, 6569, 6761, 6793, 6841, 7121, 7129, 7481, 7577, 7817, 8081, 8233, 8537, 9001, 9137, 9209, 9241
Offset: 1

Views

Author

Christopher J. Smyth, Jul 22 2009

Keywords

Comments

Each term p has the form 2^r*j + 1, where r >= 3, j is odd, and ord_p(-2) divides j.

Examples

			281 is in the sequence as 281 = 2^3*35 + 1 and 281 | 2^35 + 1.
		

Crossrefs

Set difference of A163183 and A007520.

Programs

  • Maple
    with(numtheory):A:=NULL:p:=2: for c to 500 do p:=nextprime(p);if order(-2,p) mod 2=1 and p mod 8 = 1 then A:=A,p;;fi;od:A;

Extensions

More terms from Max Alekseyev, Sep 29 2016
Previous Showing 21-24 of 24 results.