A053157
Number of 3-element intersecting families (with not necessarily distinct sets) whose union is an n-element set.
Original entry on oeis.org
1, 5, 32, 235, 1816, 14055, 107052, 800315, 5886416, 42739855, 307295572, 2193374595, 15571898616, 110121224855, 776543100092, 5464689616075, 38398915520416, 269529406433055, 1890416947176612, 13251578251332755
Offset: 1
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
-
[(7^n -3*5^n +3*4^n +2*3^n -3*2^n +2)/6: n in [1..50]]; // G. C. Greubel, Oct 07 2017
-
Table[(7^n -3*5^n +3*4^n +2*3^n -3*2^n +2)/6, {n,1,50}] (* G. C. Greubel, Oct 07 2017 *)
-
for(n=1,50, print1((7^n -3*5^n +3*4^n +2*3^n -3*2^n +2)/6, ", ")) \\ G. C. Greubel, Oct 07 2017
A051363
Number of 6-element families of an n-element set such that every 3 members of the family have a nonempty intersection.
Original entry on oeis.org
0, 0, 0, 0, 112, 40286, 5485032, 534844548, 45066853496, 3538771308282, 267882021563464, 19861835713621616, 1453175611052688600, 105278656040052332838, 7564280930105061931496, 539399446172552069053404
Offset: 0
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
A051364
Number of 5-element families of an n-element set such that every 3 members of the family have a nonempty intersection.
Original entry on oeis.org
0, 0, 0, 0, 225, 21571, 1174122, 51441824, 2038356243, 76714338477, 2804947403364, 100732231517698, 3572491367063421, 125474030774355263, 4371052010746528926, 151172238539268318372
Offset: 0
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
-
Table[1/5! (32^n - 10*28^n + 30*26^n + 5*25^n - 80*24^n + 45*23^n + 105*22^n - 217*21^n + 205*20^n - 120*19^n + 45*18^n - 10*17^n - 9*16^n + 40*14^n - 60*13^n + 40*12^n - 10*11^n + 35*8^n - 35*7^n - 50*4^n + 50*3^n + 24*2^n - 24), {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
A051365
Number of 4-element families of an n-element set such that every 3 members of the family have a nonempty intersection.
Original entry on oeis.org
0, 0, 0, 3, 275, 8475, 192385, 3831093, 71466675, 1285857975, 22632300245, 392522268633, 6734698919575, 114576024346875, 1935649374363705, 32505459713369373, 543014736097852475, 9029329231317194175, 149522990698790644765, 2466942184607949641313
Offset: 0
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
-
[(16^n - 4*14^n + 6*13^n - 4*12^n + 11^n - 6*8^n + 6*7^n + 11*4^n - 11*3^n - 6*2^n + 6)/24: n in [0..50]]; // G. C. Greubel, Oct 08 2017
-
Table[1/4! (16^n - 4*14^n + 6*13^n - 4*12^n + 11^n - 6*8^n + 6*7^n + 11*4^n - 11*3^n - 6*2^n + 6), {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
-
for(n=0,50, print1((16^n - 4*14^n + 6*13^n - 4*12^n + 11^n - 6*8^n + 6*7^n + 11*4^n - 11*3^n - 6*2^n + 6)/24, ", ")) \\ G. C. Greubel, Oct 08 2017
A051366
Number of 6-element families of an n-element set such that every 4 members of the family have a nonempty intersection.
Original entry on oeis.org
0, 0, 0, 0, 112, 39761, 5318420, 506289623, 41378309308, 3133123494417, 227657567966500, 16152548751321851, 1129224692910819164, 78169242144478858373, 5373159786842137703140, 367368738925063893430959
Offset: 0
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
-
Table[1/6! (64^n - 15*60^n + 60*58^n + 25*57^n - 240*56^n + 45*55^n + 705*54^n - 987*53^n - 351*52^n + 3040*51^n - 5445*50^n + 6105*49^n - 4939*48^n + 2997*47^n - 1365*46^n + 455*45^n - 105*44^n + 15*43^n - 42^n - 15*32^n + 75*30^n - 150*29^n + 150*28^n - 75*27^n + 15*26^n + 85*16^n - 85*15^n - 225*8^n + 225*7^n + 274*4^n - 274*3^n - 120*2^n + 120), {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
A051367
Number of 5-element families of an n-element set such that every 4 members of the family have a nonempty intersection.
Original entry on oeis.org
0, 0, 0, 0, 224, 21281, 1144027, 49310674, 1915317642, 70460566827, 2513684751809, 88008877380908, 3043421159408080, 104321464544910613, 3552122530256316471, 120307381384305672102
Offset: 0
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
-
[(32^n - 5*30^n + 10*29^n - 10*28^n + 5*27^n - 26^n - 10*16^n + 10*15^n + 35*8^n - 35*7^n - 50*4^n + 50*3^n + 24*2^n - 24)/120: n in [0..50]]; // G. C. Greubel, Oct 08 2017
-
Table[(1/5!)*(32^n - 5*30^n + 10*29^n - 10*28^n + 5*27^n - 26^n - 10*16^n + 10*15^n + 35*8^n - 35*7^n - 50*4^n + 50*3^n + 24*2^n - 24), {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
-
for(n=0,50, print1((1/5!)*(32^n - 5*30^n + 10*29^n - 10*28^n + 5*27^n - 26^n - 10*16^n + 10*15^n + 35*8^n - 35*7^n - 50*4^n + 50*3^n + 24*2^n - 24), ", ")) \\ G. C. Greubel, Oct 08 2017
A059090
Triangle T(n,m) giving number of m-element intersecting antichains on a labeled n-set or n-variable Boolean functions with m nonzero values in the Post class F(7,2), m=0,.., A037952(n).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 7, 3, 1, 1, 15, 30, 30, 5, 1, 31, 195, 605, 780, 543, 300, 135, 45, 10, 1, 1, 63, 1050, 9030, 41545, 118629, 233821, 329205, 327915, 224280, 100716, 29337, 5950, 910, 105, 7
Offset: 0
1;
1, 1;
1, 3;
1, 7, 3, 1;
1, 15, 30, 30, 5;
1, 31, 195, 605, 780, 543, 300, 135, 45, 10, 1;
1, 63, 1050, 9030, 41545, 118629, 233821, 329205, 327915, 224280, 100716, 29337, 5950, 910, 105, 7;
- Jovovic V., Kilibarda G., The number of n-variable Boolean functions in the Post class F(7,2), Belgrade, 2001, in preparation.
- Pogosyan G., Miyakawa M., Nozaki A., Rosenberg I., The Number of Clique Boolean Functions, IEICE Trans. Fundamentals, Vol. E80-A, No. 8, pp. 1502-1507, 1997/8.
A051368
Number of Boolean functions of n variables and rank 8 from the Post class F(5,2).
Original entry on oeis.org
0, 0, 0, 12, 105765, 59046810, 16636450912, 3491313542424, 627725748292995, 102894277877828670, 15867914519581210614, 2343602605748557069356, 335205287948366997151705, 46782266953279485879549090
Offset: 1
- E. Post, Two-valued iterative systems, Annals of Mathematics, no 5, Princeton University Press, NY, 1941.
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
Comments