cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A295553 Expansion of 1/(1 - Sum_{k>=1} (2*k-1)!!*x^k).

Original entry on oeis.org

1, 1, 4, 22, 154, 1330, 13882, 171802, 2474098, 40738594, 755322778, 15566915770, 352862768434, 8720662458754, 233285616212506, 6713983428179098, 206813607458357746, 6788092999359053410, 236481982146071359258, 8714521818620631672058, 338660320676350494328882, 13841377309645038610883266
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 23 2017

Keywords

Comments

Invert transform of A001147.
Number of compositions (ordered partitions) of n where there are 1*3*5*...*(2*k-1) sorts of part k.

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[Series[1/(1 - Sum[(2 k - 1)!! x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
    nmax = 21; CoefficientList[Series[1 + x/(1 - 2 x + ContinuedFractionK[-k x, 1, {k, 2, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[(2 k - 1)!! a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 21}]

Formula

G.f.: 1/(1 - Sum_{k>=1} A001147(k)*x^k).
G.f.: 1 + x/(1 - 2*x - 2*x/(1 - 3*x/(1 - 4*x/(1 - 5*x/(1 - 6*x/(1 - ...)))))), a continued fraction.
a(0) = 1; a(n) = Sum_{k=1..n} (2*k-1)!!*a(n-k).

A307364 Expansion of 1/(1 - Sum_{k>=1} prime(k)#*x^k), where prime(k)# is the product of first k primes (A002110).

Original entry on oeis.org

1, 2, 10, 62, 454, 4310, 49954, 746078, 13180750, 283749638, 7747573666, 234558524690, 8437098259486, 340293472077722, 14523592739559970, 676119676949381762, 35425760935764788014, 2070535245695282709950, 125884029549845876309674, 8379955313909510350628018
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 05 2019

Keywords

Comments

Invert transform of A002110.

Crossrefs

Programs

  • Mathematica
    nmax = 19; CoefficientList[Series[1/(1 - Sum[Product[Prime[j], {j, k}] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[Product[Prime[j], {j, k}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]

Formula

a(0) = 1; a(n) = Sum_{k=1..n} A002110(k)*a(n-k).

A370378 Number of compositions of n where there are (2*k)! sorts of part k.

Original entry on oeis.org

1, 2, 28, 824, 44080, 3837536, 496714432, 89388391808, 21308786907904, 6492490191541760, 2459980247094946816, 1134165248844198336512, 625104522913814858149888, 405845822590303335956701184, 306541019968859037778756157440
Offset: 0

Views

Author

Seiichi Manyama, Feb 17 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 15; CoefficientList[Series[1/(1 - Sum[(2*k)! * x^k, {k, 1, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 17 2024 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(1/(1-sum(k=1, N, (2*k)!*x^k)))

Formula

G.f.: 1 / (1 - Sum_{k>=1} (2*k)! * x^k).
a(0) = 1; a(n) = Sum_{k=1..n} (2*k)! * a(n-k).
a(n) ~ (2*n)! * (1 + 1/n^2 + 1/(2*n^3) + 4/n^4 + 91/(8*n^5) + 51/n^6 + 7951/(32*n^7) + 11147/(8*n^8) + 1122171/(128*n^9) + 983245/(16*n^10) + ...). - Vaclav Kotesovec, Feb 17 2024

A305535 Expansion of 1/(1 - x/(1 - 2*x/(1 - 2*x/(1 - 4*x/(1 - 4*x/(1 - 6*x/(1 - 6*x/(1 - ...)))))))), a continued fraction.

Original entry on oeis.org

1, 1, 3, 13, 75, 557, 5179, 58589, 784715, 12154061, 213593563, 4195613373, 91031201643, 2160916171181, 55687501548539, 1547866851663261, 46150908197995403, 1469089501918434957, 49722765216242122267, 1782934051704982201469, 67514992620138056010667
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 04 2018

Keywords

Comments

Invert transform of A000165, shifted right one place.

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[1/(1 - x/(1 + ContinuedFractionK[-2 Floor[(k + 1)/2] x, 1, {k, 1, nmax}])), {x, 0, nmax}], x]
    nmax = 20; CoefficientList[Series[1/(1 - Sum[2^(k - 1) (k - 1)! x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[2^(k - 1) (k - 1)! a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]

Formula

a(n) ~ 2^(n-1) * (n-1)!. - Vaclav Kotesovec, Sep 18 2021
Previous Showing 11-14 of 14 results.