cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A346456 a(n) is the smallest number k such that Sum_{j=1..k} (-1)^omega(j) = -n, where omega(j) is the number of distinct primes dividing j.

Original entry on oeis.org

3, 4, 5, 8, 9, 32, 9283, 9284, 9285, 9292, 9293, 9294, 9295, 9296, 9343, 9434, 9437, 9440, 9479, 9686, 9689, 9690, 9697, 9698, 9699, 9700, 9711, 9716, 9717, 9718, 9719, 9720, 9721, 9740, 9741, 9852, 9855, 9856, 9857, 10284, 10285, 10286, 10305, 10314, 10325, 10326, 10331, 10338
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 19 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=(k=1;While[Sum[(-1)^PrimeNu@j,{j,k}]!=-n,k++];k);Array[a,6] (* Giorgos Kalogeropoulos, Jul 19 2021 *)
  • PARI
    a(n) = my(k=1); while (sum(j=1, k, (-1)^omega(j)) != -n, k++); k; \\ Michel Marcus, Jul 19 2021

Formula

a(n) = min {k : Sum_{j=1..k} mu(rad(j)) = -n}, where mu is the Moebius function and rad is the squarefree kernel.

A057639 First differences of zero-sites (A028442) of Mertens's function A002321.

Original entry on oeis.org

37, 1, 18, 7, 28, 8, 44, 4, 1, 9, 1, 3, 1, 2, 48, 17, 1, 3, 1, 2, 16, 75, 2, 1, 1, 20, 2, 1, 2, 4, 1, 1, 2, 27, 8, 2, 1, 1, 2, 1, 5, 1, 5, 1, 2, 1, 1, 1, 2, 1, 109, 4, 66, 1, 27, 1, 1, 144, 4, 8, 2, 1, 2, 13, 1, 2, 9, 1, 1, 24, 1, 3, 16, 8, 6, 1, 2, 3, 4, 2, 1, 2, 5, 1, 2, 4, 3, 2, 1, 3, 1, 82, 3, 5
Offset: 1

Views

Author

Labos Elemer, Oct 11 2000

Keywords

Comments

Mertens's function (A002321) is oscillating. The width of its waves is given here.

Crossrefs

Programs

  • Mathematica
    Differences[Position[Accumulate[Array[MoebiusMu,1500]],0]//Flatten] (* Harvey P. Dale, Nov 10 2016 *)
  • PARI
    lista(kmax) = {my(s = 0, k1 = 2); for(k2 = 3, kmax, s += moebius(k2); if(s == 0, print1(k2 - k1, ", "); k1 = k2));} \\ Amiram Eldar, Jun 09 2024

Formula

a(n) = A028442(n+1) - A028442(n).

Extensions

Offset corrected by Amiram Eldar, Jun 09 2024

A084235 Smallest k such that |M(k)| = 2^n, where M(x) is Mertens's function A002321.

Original entry on oeis.org

1, 5, 31, 199, 1637, 8507, 24110, 95961, 355541, 1786062, 6473791, 30649362, 109851909, 456774199, 2589994747, 7613644886, 37725066313, 108500046711
Offset: 1

Views

Author

Robert G. Wilson v, May 13 2003

Keywords

References

  • Karl Sabbagh, The Riemann Hypothesis, The Greatest Unsolved Problem in Mathematics, Farrar, Straus and Giroux, New York, 2002, page 191.

Crossrefs

Programs

  • Mathematica
    i = s = 0; Do[ While[ Abs[s] < 2^n, s = s + MoebiusMu[i]; i++ ]; Print[i - 1], {n, 0, 25}]

Formula

a(n) = A051402(2^n). - Amiram Eldar, May 06 2024

Extensions

Definition corrected by L. Edson Jeffery, Mar 18 2013
a(15)-a(18) by Ashley Jordan and Luke March, Jul 22 2014
Previous Showing 11-13 of 13 results.