A098534 Mod 3 analog of Stern's diatomic series.
0, 1, 1, 2, 3, 2, 2, 4, 3, 4, 7, 5, 6, 5, 5, 4, 6, 4, 4, 8, 6, 8, 8, 7, 6, 10, 7, 8, 15, 11, 14, 10, 12, 10, 13, 11, 12, 11, 11, 10, 12, 10, 10, 11, 9, 8, 14, 10, 12, 10, 10, 8, 12, 8, 8, 16, 12, 16, 13, 14, 12, 17, 14, 16, 18, 16, 16, 17, 15, 14, 17, 13, 12, 22, 16, 20, 18, 17, 14, 22
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
Programs
-
Magma
[0] cat [(&+[Binomial(n-k-1,k) mod 3: k in [0..Floor((n-1)/2)]]): n in [1..100]]; // G. C. Greubel, Jan 17 2018
-
Mathematica
Table[Sum[Mod[Binomial[n - k - 1, k], 3], {k, 0, Floor[(n - 1)/2]}], {n, 0, 100}] (* G. C. Greubel, Jan 17 2018 *)
-
PARI
for(n=0,100, print1(sum(k=0,floor((n-1)/2), lift(Mod(binomial(n-k-1,k),3))), ", ")) \\ G. C. Greubel, Jan 17 2018
Formula
a(n) = Sum_{k=0..floor((n-1)/2)} mod(binomial(n-k-1, k), 3).
Comments