cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 270 results. Next

A143152 Inverse Möbius transform of the least prime factor of n: A051731 * A020639.

Original entry on oeis.org

1, 3, 4, 5, 6, 8, 8, 7, 7, 10, 12, 12, 14, 12, 12, 9, 18, 13, 20, 14, 14, 16, 24, 16, 11, 18, 10, 16, 30, 20, 32, 11, 18, 22, 18, 19, 38, 24, 20, 18, 42, 22, 44, 20, 18, 28, 48, 20, 15, 17, 24, 22, 54, 18, 22, 20, 26, 34, 60, 28, 62, 36, 20, 13, 24, 26, 68, 26, 30, 26, 72, 25, 74
Offset: 1

Views

Author

Gary W. Adamson, Jul 27 2008

Keywords

Examples

			a(4) = 5 = (1, 1, 0, 1) dot (1, 2, 3, 2) = (1 + 2 + 0 + 2), where (1, 1, 0, 1) = row 4 of triangle A051731 and A010639 = (1, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11,...).
Since a(n) = sum of least prime factors of the divisors of n, the divisors of 12 are recorded in triangle row 12 of A127093: (1, 2, 3, 4, 0, 6, 0, 0, 0, 0, 0, 12). Lpf of these terms = row 12 of triangle A143151: (1, 2, 3, 2, 0, 2, 0, 0, 0, 0, 0, 2); sum = 12.
		

Crossrefs

Programs

  • Maple
    read transforms : A020639 := proc(n) local i ; if n = 1 then 1; else for i from 1 do if n mod ithprime(i) = 0 then RETURN(ithprime(i)) ; fi; od: fi; end: a020639 := [seq(A020639(n),n=1..100)] : a143152 := MOBIUSi(a020639) : for i from 1 to nops(a143152) do printf("%d,",op(i,a143152)) ; od: # R. J. Mathar, Aug 11 2008
  • PARI
    A020639(n) = if(1==n,n,(factor(n)[1, 1]));
    A143152(n) = sumdiv(n,d,A020639(d)); \\ Antti Karttunen, Nov 12 2021

Formula

a(p) = (p+1) for prime p.
Inverse Mobius transform of A020639, where A020639(n) = Lpf(n).
Row sums of triangle A143151.
a(n) = Sum_{d|n} A020639(d). - Antti Karttunen, Nov 12 2021

Extensions

Extended beyond a(14) by R. J. Mathar, Aug 11 2008
Name amended by Antti Karttunen, Nov 12 2021

A143256 Triangle read by rows, matrix multiplication A051731 * A128407 * A127648, 1<=k<=n.

Original entry on oeis.org

1, 1, -2, 1, 0, -3, 1, -2, 0, 0, 1, 0, 0, 0, -5, 1, -2, -3, 0, 0, 6, 1, 0, 0, 0, 0, 0, -7, 1, -2, 0, 0, 0, 0, 0, 0, 1, 0, -3, 0, 0, 0, 0, 0, 0, 1, -2, 0, 0, -5, 0, 0, 0, 0, 10, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11, 1, -2, -3, 0, 0, 6, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13, 1, -2, 0, 0, 0, 0, -7, 0, 0, 0, 0, 0, 0, 14
Offset: 1

Views

Author

Gary W. Adamson, Aug 02 2008

Keywords

Comments

Right border = n*mu(n) = A055615.
Row sums = A023900: (1, -1, -2, -1, -4, 2, -6,...).

Examples

			First few rows of the triangle =
1;
1, -2;
1, 0, -3;
1, -2, 0, 0;
1, 0, 0, 0, -5;
1, -2, -3, 0, 0, 6;
1, 0, 0, 0, 0, 0, -7;
...
		

Crossrefs

Programs

  • Maple
    seq(seq(`if`(i mod j = 0, j*numtheory:-mobius(j),0), j=1..i),i=1..20); # Robert Israel, Sep 07 2014
  • Mathematica
    Table[If[Divisible[n, k], k MoebiusMu[k], 0], {n, 1, 14}, {k, 1, n}] (* Jean-François Alcover, Jun 19 2019 *)
  • Sage
    A143256_row = lambda n: [k*moebius(k) if k.divides(n) else 0 for k in (1..n)]
    for n in (1..10): print(A143256_row(n)) # Peter Luschny, Jan 05 2018

Formula

Triangle read by rows, A051731 * A128407 * A127648, 1<=k<=n

A143317 Triangle read by rows: A051731 * A143239.

Original entry on oeis.org

1, 3, -1, 4, 0, -1, 7, -3, 0, 0, 6, 0, 0, 0, -1, 12, -4, -3, 0, 0, 1, 8, 0, 0, 0, 0, 0, -1, 15, -7, 0, 0, 0, 0, 0, 0, 13, 0, -4, 0, 0, 0, 0, 0, 0, 18, -6, 0, 0, -3, 0, 0, 0, 0, 1, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 28, -12, -7, 0, 0, 3, 0, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1
Offset: 1

Views

Author

Gary W. Adamson, Aug 07 2008

Keywords

Comments

Left border = sigma(n), A000203.
Right border = mu(n), A008683.
Row sums = n.
It appears that T(n,k) = Sum_{d|n} mu(d)*sigma(n/d). - Joerg Arndt, Jul 31 2011

Examples

			First few rows of the triangle:
   1;
   3, -1;
   4,  0, -1;
   7, -3,  0,  0;
   6,  0,  0,  0, -1;
  12, -4, -3,  0,  0,  1;
   8,  0,  0,  0,  0,  0, -1;
  15, -7,  0,  0,  0,  0,  0,  0;
  13,  0, -4,  0,  0,  0,  0,  0,  0;
  18, -6,  0,  0, -3,  0,  0,  0,  0,  1;
  ...
		

Crossrefs

Extensions

a(68) = -12 corrected by Georg Fischer, Jun 05 2023

A143349 Triangle read by rows: A000012 * A054524 = A000012 * A051731 * A128407.

Original entry on oeis.org

1, 2, -1, 3, -1, -1, 4, -2, -1, 0, 5, -2, -1, 0, -1, 6, -3, -2, 0, -1, 1, 7, -3, -2, 0, -1, 1, -1, 8, -4, -2, 0, -1, 1, -1, 0, 9, -4, -3, 0, -1, 1, -1, 0, 0, 10, -5, -3, 0, -2, 1, -1, 0, 0, 1, 11, -5, -3, 0, -2, 1, -1, 0, 0, 1, -1, 12, -6, -4, 0, -2, 2, -1, 0, 0, 1, -1, 0, 13, -6, -4, 0, -2, 2, -1, 0, 0, 1, -1, 0, -1, 14, -7, -4, 0, -2, 2, -2, 0, 0, 1, -1, 0, -1, 1
Offset: 1

Views

Author

Gary W. Adamson, Aug 10 2008

Keywords

Comments

The triangle acts as a transform converting any sequence S(k) into a triangle with row sums = S(k). By way of example, begin with S(k), the primes: (2, 3, 5, 7, 11, ...). Add (0, 1, 2, 3, 4, ...) to the sequence getting (prime(n)+(n-1)) = (2, 4, 7, 10, 15, 18, 23, 36, 31, ...) = sequence Q(k). Then replace column 1 (1, 2, 3, ...) of triangle A143349 with sequence Q(k). This = triangle A143350 with row sums prime(n):
2;
4, -1;
7, -1, -1;
10, -2, -1, 0;
...
The A000012 multiplier takes partial sums of A054524 column terms. A051731 is the inverse Mobius transform and A128407 = an infinite lower triangular matrix with mu(n) in the main diagonal and the rest zeros.

Examples

			First few rows of the triangle:
   1;
   2, -1;
   3, -1, -1;
   4, -2, -1,  0;
   5, -2, -1,  0, -1;
   6, -3, -2,  0, -1,  1;
   7, -3, -2,  0, -1,  1, -1;
   8, -4, -2,  0, -1,  1, -1,  0;
   9, -4, -3,  0, -1,  1, -1,  0,  0;
  10, -5, -3,  0, -2,  1, -1,  0,  0,  1;
  11, -5, -3,  0, -2,  1, -1,  0,  0,  1, -1;
  12, -6, -4,  0, -2,  2, -1,  0,  0,  1, -1,  0;
  13, -6, -4,  0, -2,  2, -1,  0,  0,  1, -1,  0, -1;
  14, -7, -4,  0, -2,  2, -2,  0,  0,  1, -1,  0, -1,  1;
  ...
		

Crossrefs

Extensions

a(39) ff. corrected by Georg Fischer, Jun 05 2023

A143354 Triangle read by rows, (A051731)^4 * A128407, 1<=k<=n.

Original entry on oeis.org

1, 4, -1, 4, 0, -1, 10, -4, 0, 0, 4, 0, 0, 0, -1, 16, -4, -4, 0, 0, 1, 4, 0, 0, 0, 0, 0, -1, 20, -10, 0, 0, 0, 0, 0, 0, 10, 0, -4, 0, 0, 0, 0, 0, 0, 16, -4, 0, 0, -4, 0, 0, 0, 0, 1, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 40, -16, -10, 0, 0, 4, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1
Offset: 1

Views

Author

Gary W. Adamson, Aug 10 2008

Keywords

Comments

Left border = A007426.
Right border = mu(n), A008683.
Row sums = A007425: (1, 3, 3, 6, 3, 9,...).

Examples

			First few rows of the triangle =
1;
4, -1;
4, 0, -1;
10, -4, 0, 0;
4, 0, 0, 0, 0, -1;
16, -4, -4, 0, 0, 1;
4, 0, 0, 0, 0, 0, -1;
10, -10, 0, 0, 0, 0, 0, 0;
...
		

Crossrefs

Formula

Triangle read by rows, (A051731)^4 * A128407, 1<=k<=n

A143356 A051731 * A006218.

Original entry on oeis.org

1, 4, 6, 12, 11, 23, 17, 32, 29, 41, 30, 66, 38, 61, 61, 82, 53, 104, 61, 115, 92, 107, 77, 170, 98, 132, 124, 170, 104, 216, 114, 201, 158, 183, 158, 287, 143, 210, 193, 293, 161, 318, 171, 291, 266, 266, 189, 418, 218, 335, 269, 357, 220, 426, 271, 429, 309, 354, 250
Offset: 1

Views

Author

Gary W. Adamson, Aug 10 2008

Keywords

Examples

			a(4) = 12 = sum of row 4 terms of triangle A143355: (7, + 3 + 1 + 1).
a(4) = 12 = (1, 1, 0, 1) dot (1, 3, 5, 8) = (1 + 3 + 0 + 8), where (1, 1, 0, 1) = row 4 of A051731 and A006218 = (1, 3, 5, 8, 10, 14,...).
		

Crossrefs

Programs

  • PARI
    row(n) = my(d=divisors(n)); vector(n, k, #select(x->(x>=k), d)); \\ A135539
    a(n) = my(v=row(n)); sum(i=1, n, numdiv(i)*v[i]); \\ Michel Marcus, Jul 26 2022

Formula

Inverse Mobius transform (A051731) of A006218. Row sums of triangle A143355.
a(n) = Sum_{i=1..n} tau(i)*A135539(n,i). - Ridouane Oudra, Jul 26 2022
a(n) = Sum_{d|n} A006218(d). - Ridouane Oudra, Jul 27 2022

Extensions

Corrected typo in A-number in formula; added more terms - R. J. Mathar, Jan 19 2009

A155029 Complement to A051731 with the identity matrix A023531 included.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Mats Granvik, Jan 19 2009

Keywords

Examples

			Table begins:
  1;
  0, 1;
  0, 1, 1;
  0, 0, 1, 1;
  0, 1, 1, 1, 1;
  0, 0, 0, 1, 1, 1;
  0, 1, 1, 1, 1, 1, 1;
  0, 0, 1, 0, 1, 1, 1, 1;
  0, 1, 0, 1, 1, 1, 1, 1, 1;
		

Crossrefs

Programs

  • Magma
    [k eq n select 1 else (k eq 0 or n mod k eq 0) select 0 else 1: k in [1..n], n in [1..20]]; // G. C. Greubel, Mar 07 2021
  • Mathematica
    Table[If[k==n, 1, If[k==0, 0, If[Mod[n, k]==0, 0, 1]]], {n, 20}, {k, n}]//Flatten (* G. C. Greubel, Mar 07 2021 *)
  • Sage
    flatten([[1 if k==n else 0 if (k==0 or n%k==0) else 1 for k in [1..n]] for n in [1..20]]) # G. C. Greubel, Mar 07 2021
    

Formula

T(n, k) = 0 if n==0 (mod k) otherwise 1 with T(n, n) = 1 and T(n, 1) = 0. - G. C. Greubel, Mar 07 2021

A156837 Triangle read by rows, A051731 * A156348.

Original entry on oeis.org

1, 2, 1, 2, 0, 1, 3, 3, 0, 1, 2, 0, 0, 0, 1, 4, 4, 4, 0, 0, 1, 2, 0, 0, 0, 0, 0, 1, 4, 7, 0, 5, 0, 0, 0, 1, 3, 0, 7, 0, 0, 0, 0, 0, 1, 4, 6, 0, 0, 6, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 12, 14, 11, 0, 7, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson & Mats Granvik, Feb 16 2009

Keywords

Comments

Left border: A000005(n).
Row sums = 3 iff n-th row is prime.

Examples

			First few rows of the triangle =
1;
2, 1;
2, 0, 1;
3, 3, 0, 1;
2, 0, 0, 0, 1;
4, 4, 4, 0, 0, 1;
2, 0, 0, 0, 0, 0, 1;
4, 7, 0, 5, 0, 0, 0, 1;
3, 0, 7, 0, 0, 0, 0, 0, 1;
4, 6, 0, 0, 6, 0, 0, 0, 0, 1;
2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
6, 12, 14, 11, 0, 7, 0, 0, 0, 0, 0, 1;
2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
4, 8, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 1;
...
		

Crossrefs

Cf. A156348, A051731, A000005, A156838 (row sums).

Programs

Formula

Triangle read by rows, A051731 * A156348 = inverse Mobius transform of A156348

A158901 A051731 * (1, 1, 2, 3, 4, 5, ...).

Original entry on oeis.org

1, 2, 3, 5, 5, 9, 7, 12, 11, 15, 11, 23, 13, 21, 21, 27, 17, 34, 19, 37, 29, 33, 23, 53, 29, 39, 37, 51, 29, 65, 31, 58, 45, 51, 45, 83, 37, 57, 53, 83, 41, 89, 43, 79, 73, 69, 47, 115, 55, 88, 69, 93, 53, 113, 69, 113, 77, 87, 59, 157, 61, 93, 99, 121, 81, 137, 67, 121, 93, 137
Offset: 1

Views

Author

Gary W. Adamson, Mar 29 2009

Keywords

Comments

a(n) = prime(n) if n is prime but nonprime n's can also have prime a(n).
Equals left border of triangle A158902.

Examples

			a(4) = 5 = (1, 1, 0, 1) dot (1, 1, 2, 3) = (1 + 1 + 0 + 3); where (1, 1, 0, 1) = row 4 of triangle A051731.
		

Crossrefs

Cf. A158902.

Programs

  • Maple
    L := [1,seq(n, n=1..100)] ; read("transforms"); MOBIUSi(L) ; # R. J. Mathar, Apr 02 2009
  • PARI
    a(n) = sigma(n) - numdiv(n) + 1; \\ Michel Marcus, Sep 14 2017

Formula

A051731 * [1, 1, 2, 3, 4, 5, ...] = inverse Mobius transform of [1, 1, 2, 3, 4, ...].
a(n) = sigma(n) - d(n) + 1. - Juri-Stepan Gerasimov, Aug 30 2009
a(n) = 1 + A065608(n). - R. J. Mathar, Jan 08 2015

A158951 Triangle read by rows, A051731 * A158948.

Original entry on oeis.org

1, 2, 1, 3, 0, 1, 4, 2, 0, 1, 4, 0, 1, 0, 1, 7, 2, 1, 1, 0, 1, 5, 0, 1, 0, 1, 0, 1, 8, 3, 0, 2, 0, 1, 0, 18, 0, 2, 0, 1, 0, 1, 0, 1, 10, 2, 1, 1, 1, 1, 0, 1, 0, 1
Offset: 1

Views

Author

Gary W. Adamson & Mats Granvik, Mar 31 2009

Keywords

Comments

Row sums = sigma(n), A000203. Left column = A079247

Examples

			First few rows of the triangle =
1;
2, 1;
3, 0, 1;
4, 2, 0, 1;
4, 0, 1, 0, 1;
7, 2, 1, 1, 0, 1;
5, 0, 1, 0, 1, 0, 1;
8, 3, 0, 2, 0, 1, 0, 1;
8, 0, 2, 0, 1, 0, 1, 0, 1;
10, 2, 1, 1, 1, 1, 0, 1, 0, 1;
7, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1;
15, 4, 1, 3, 0, 2, 0, 10, 1, 0, 1;
8, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1;
13, 2, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1;
...
		

Crossrefs

Formula

Triangle read by rows, A051731 * A158948
Previous Showing 31-40 of 270 results. Next