cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 386 results. Next

A375932 The largest unitary k-free divisor of n where k = A051903(n) is the maximum exponent in the prime factorization of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 5, 1, 1, 1, 3, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 11, 5, 1, 1, 3, 1, 2, 1, 13, 1, 2, 1, 7, 1, 1, 1, 15, 1, 1, 7, 1, 1, 1, 1, 17, 1, 1, 1, 9, 1, 1, 3, 19, 1, 1, 1, 5, 1, 1, 1, 21, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 03 2024

Keywords

Comments

The product of the prime powers in the prime factorization of n that have an exponent that is smaller than the maximum exponent in this factorization.

Examples

			60 = 2^2 * 3 * 5, and the maximum exponent in the prime factorization of 60 is 2, which is the exponent of its prime factor 2. Therefore a(60) = 3 * 5 = 15.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{f = FactorInteger[n], p, e, i, m}, p = f[[;; , 1]]; e = f[[;; , 2]]; m = Max[e]; i = Position[e, m] // Flatten; n / (Times @@ p[[i]])^m]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p = f[,1], e = f[,2], m); if(n == 1, 1, m = vecmax(e); prod(i = 1, #p, if(e[i] < m, p[i]^e[i], 1)));}

Formula

If n = Product_{i} p_i^e_i (where p_i are distinct primes) then a(n) = Product_{i} p_i^(e_i * [e_i < max_{j} e_j]), where [] is the Iverson bracket.
a(n) = n / A375931(n).
a(n) = 1 if and only if n is a power of a squarefree number (A072774).
A051903(a(n)) = A375933(n).
a(n!) = A049606(n) for n != 3.

A328385 If n is of the form p^p, a(n) = n, otherwise a(n) is the first number found by iterating the map x -> A003415(x) that is different from n and either a prime, or whose degree (A051903) differs from the degree of n.

Original entry on oeis.org

0, 1, 1, 4, 1, 5, 1, 12, 6, 7, 1, 16, 1, 9, 8, 32, 1, 21, 1, 24, 7, 13, 1, 44, 10, 8, 27, 32, 1, 31, 1, 80, 9, 19, 12, 96, 1, 7, 16, 68, 1, 41, 1, 48, 39, 25, 1, 608, 14, 39, 20, 56, 1, 81, 16, 92, 13, 31, 1, 96, 1, 9, 51, 640, 18, 61, 1, 72, 8, 59, 1, 156, 1, 16, 55, 80, 18, 71, 1, 3424, 108, 43, 1, 128, 13, 45, 32, 140, 1, 123, 20, 96, 19
Offset: 1

Views

Author

Antti Karttunen, Oct 14 2019

Keywords

Examples

			For n = 3, 3 is a prime, thus a(3) = 1.
For n = 4, A003415(4) = 4, thus as it is among the fixed points of A003415 and a(4) = 4.
For n = 8 = 2^3, its "degree" is A051903(33) = 3, but A003415(8) = 12 = 2^2 * 3, with degree 2, thus a(8) = 12.
For n = 21 = 3*7, A051903(21) = 1, the first derivative A003415(21) = 10 = 2*5 is of the same degree as A051903(10) = 1, but then continuing, we have A003415(10) = 7, which is a prime, thus a(21) = 7.
For n = 33 = 3*11, A051903(33) = 1, A003415(33) = 14 = 2*7, is of the same degree, but on the second iteration, A003415(14) = 9 = 3^2, with A051903(9) = 2, different from the initial degree, thus a(33) = 9.
		

Crossrefs

Cf. A328384 (the number of iterations needed to reach such a number).

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A051903(n) = if((1==n),0,vecmax(factor(n)[, 2]));
    A328385(n) = { my(d=A051903(n), u=A003415(n)); while(u && (u!=n) && !isprime(u) && A051903(u)==d, n = u; u = A003415(u)); (u); };

Formula

a(1) = 0 [as here the degrees of 0 and 1 are considered different].
a(p) = 1 for all primes.
a(A051674(n)) = A051674(n).
a(A157037(n)) = A003415(A157037(n)), a prime.
a(A328252(n)) = A003415(A328252(n)), a squarefree number.
a(n) = A003415^(k)(n), when k = abs(A328384(n)). [Taking the abs(A328384(n))-th arithmetic derivative of n gives a(n)]

A329339 a(n) = 2^A051903(n)*Sum_{k=0..n-1} 2^(A268336(n)*k): upper bound for A329000(n).

Original entry on oeis.org

1, 6, 42, 60, 139810, 126, 139620524162, 2040, 349524, 699050, 2537779500750160131246576896002, 16380, 44612382091907903486070965589630128805126146, 1256584717458, 153722867280912930, 1048560, 231587712222682663714935471840371426842813815977643091627066215779128553111554, 1048572
Offset: 1

Views

Author

M. F. Hasler, Nov 13 2019

Keywords

Comments

This corresponds to the upper bound for A329000 as explained in the "FORMULA" for A329126.
Differs from A329000(n) for n = 10, 14, 15, ...

Crossrefs

Cf. A329000, A329126, A329338 (a(n) written in binary), A067029, A051903.

Programs

  • PARI
    apply( A329339(n)={my(m=2^(lcm(lcm(znstar(n)[2]),n)/n)); (m^n-1)\(m-1)<1,vecmax(factor(n)[,2]))}, [1..20])

Formula

a(n) = 2^A051903(n)*(m^n-1)/(m-1) with m = 2^A268336(n).

A329885 a(n) = A051903(n) mod A002322(n), where A051903 gives the maximal prime exponent of n, and A002322 is Carmichael's lambda (also known as psi).

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 0, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 0, 4, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 5, 1, 2, 2, 2, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 11 2019

Keywords

Comments

This differs from A051903 at n = 2, 4, 8, 12, 16, 24, 48, 80, 240. Are there any other such n? (None other found <= 201326592.)

Crossrefs

Programs

A342003 Maximal exponent in the prime factorization of the arithmetic derivative of n: a(n) = A051903(A003415(n)).

Original entry on oeis.org

0, 0, 2, 0, 1, 0, 2, 1, 1, 0, 4, 0, 2, 3, 5, 0, 1, 0, 3, 1, 1, 0, 2, 1, 1, 3, 5, 0, 1, 0, 4, 1, 1, 2, 2, 0, 1, 4, 2, 0, 1, 0, 4, 1, 2, 0, 4, 1, 2, 2, 3, 0, 4, 4, 2, 1, 1, 0, 2, 0, 1, 1, 6, 2, 1, 0, 3, 1, 1, 0, 2, 0, 1, 1, 4, 2, 1, 0, 4, 3, 1, 0, 2, 1, 2, 5, 2, 0, 1, 2, 5, 1, 2, 3, 4, 0, 1, 2, 2, 0, 1, 0, 2, 1
Offset: 2

Views

Author

Antti Karttunen, Mar 01 2021

Keywords

Crossrefs

Cf. A000040 (indices of zeros), A328234 (of ones), A328393 (of the terms < 2).

Programs

Formula

a(n) = A051903(A003415(n)).
a(n) = A051903(n) + A328310(n).
a(n) = 1 iff A341994(n) = 1.

A359071 Numerators of the partial sums of the reciprocals of the maximal exponent in prime factorization of the positive integers (A051903).

Original entry on oeis.org

1, 2, 5, 7, 9, 11, 35, 19, 22, 25, 53, 59, 65, 71, 145, 157, 163, 175, 181, 193, 205, 217, 221, 227, 239, 81, 83, 87, 91, 95, 479, 499, 519, 539, 549, 569, 589, 609, 1847, 1907, 1967, 2027, 2057, 2087, 2147, 2207, 1111, 563, 1141, 1171, 593, 608, 613, 628, 211
Offset: 2

Views

Author

Amiram Eldar, Dec 15 2022

Keywords

Examples

			Fractions begin with 1, 2, 5/2, 7/2, 9/2, 11/2, 35/6, 19/3, 22/3, 25/3, 53/6, 59/6, ...
		

Crossrefs

Cf. A051903, A129132, A242977, A359072 (denominators).

Programs

  • Mathematica
    f[n_] := Max[FactorInteger[n][[;; , 2]]]; f[1] = 0; Numerator[Accumulate[Table[1/f[n], {n, 2, 100}]]]

Formula

a(n) = numerator(Sum_{k=2..n} 1/A051903(k)).
a(n)/A359072(n) = c_1 * n + O(n^(1/2)*exp(-c_2*log(n)^(3/5)/log(log(n))^(1/5))), where c_1 = A242977 and c_2 is a constant, 0 < c_2 < 1/2^(8/5) (Suryanarayana and R. Chandra Rao, 1977).

A359072 Denominators of the partial sums of the reciprocals of the maximal exponent in prime factorization of the positive integers (A051903).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 6, 3, 3, 3, 6, 6, 6, 6, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 4, 4, 4, 4, 4, 20, 20, 20, 20, 20, 20, 20, 20, 60, 60, 60, 60, 60, 60, 60, 60, 30, 15, 30, 30, 15, 15, 15, 15, 5, 5, 5, 5, 10, 10, 10, 5, 30, 30, 30, 30, 15, 15, 15, 15, 5, 5
Offset: 2

Views

Author

Amiram Eldar, Dec 15 2022

Keywords

Crossrefs

Cf. A051903, A129132, A359071 (numerators).

Programs

  • Mathematica
    f[n_] := Max[FactorInteger[n][[;; , 2]]]; f[1] = 0; Denominator[Accumulate[Table[1/f[n], {n, 2, 100}]]]

Formula

a(n) = denominator(Sum_{k=2..n} 1/A051903(k)).

A093770 Non-perfect powers k for which q = A051903(k)/A051904(k) is an integer, A051904(k) > 1.

Original entry on oeis.org

10800, 16200, 18000, 21168, 31752, 40500, 43200, 45000, 49392, 52272, 67500, 72000, 73008, 78408, 84672, 98000, 109512, 111132, 124848, 137200, 145800, 155952, 172800, 172872, 187272, 191664, 197568, 209088, 228528, 233928, 242000
Offset: 1

Views

Author

Labos Elemer, Apr 16 2004

Keywords

Crossrefs

Programs

  • Mathematica
    ffi[x_] :=Flatten[FactorInteger[x]] ep[x_] :=Table[Part[ffi[x], 2*w], {w, 1, lf[x]}] lf[x_] :=Length[FactorInteger[x]] Do[s1=Min[ep[n]];s2=Max[ep[n]]; If[ !Equal[s1, 1]&&IntegerQ[q=(s2/s1)]&& Equal[Union[Table[IntegerQ[Part[ep[n], j]/s1], {j, 1, lf[n]}]], {False, True}], Print[n]], {n, 2, 10000000}]

Formula

Solutions to integer values of q = A051903(x)/A051904(x), when A051904(x) > 1.

A304768 Augmented integer conjugate of n. a(n) = (1/n) * A007947(n)^(1 + A051903(n)) where A007947 is squarefree kernel and A051903 is maximum prime exponent.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 18, 13, 14, 15, 2, 17, 12, 19, 50, 21, 22, 23, 54, 5, 26, 3, 98, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 250, 41, 42, 43, 242, 75, 46, 47, 162, 7, 20, 51, 338, 53, 24, 55, 686, 57, 58, 59, 450, 61, 62, 147, 2, 65, 66, 67
Offset: 1

Views

Author

Gus Wiseman, May 18 2018

Keywords

Comments

Image is the weak numbers A052485, on which n -> a(n) is an involution whose fixed points are the squarefree numbers A005117.

Crossrefs

Programs

  • Mathematica
    acj[n_]:=Module[{f,m},f=FactorInteger[n];m=Max[Last/@f];Times@@Table[p[[1]]^(m-p[[2]]+1),{p,f}]];
    Array[acj,100]
  • PARI
    a(n) = {if(n==1, 1, my(f = factor(n), e = vecmax(f[,2]) + 1); prod(i = 1, #f~, f[i,1]^e) / n);} \\ Amiram Eldar, Feb 12 2023

Formula

If n = Product_{i = 1..k} prime(x_i)^y_i, then a(n) = Product_{i = 1..k} prime(x_i)^(max{y_1,...,y_k} - y_i + 1).

A369645 Numbers k for which the difference A051903(k) - A328114(k) reaches a new maximum in range 1..k, where A051903 is the maximal exponent in the prime factorization of n, and A328114 is the maximal digit in the primorial base expansion of n.

Original entry on oeis.org

1, 2, 8, 32, 256, 2560, 30720, 32768, 4194304, 20971520, 58720256, 234881024, 536870912, 1342177280
Offset: 1

Views

Author

Antti Karttunen, Feb 01 2024

Keywords

Examples

			           k   factorization   max.exp.  in primorial  max digit  diff
                                             base
           1                       0,            1,       1,      -1
           2 = 2^1,                1,           10,       1,       0
           8 = 2^3,                3,          110,       1,       2
          32 = 2^5,                5,         1010,       1,       4
         256 = 2^8,                8,        11220,       2,       6
        2560 = 2^9 * 5^1,          9,       111120,       2,       7
       30720 = 2^11 * 3^1 * 5^1,  11,      1032000,       3,       8
       32768 = 2^15,              15,      1120110,       2,      13
     4194304 = 2^22,              22,     83876020,       8,      14
    20971520 = 2^22 * 5^1,        22,    231462310,       6,      16
    58720256 = 2^23 * 7^1,        23,    610501410,       6,      17
   234881024 = 2^25 * 7^1,        25,   1141710210,       7,      18
   536870912 = 2^29,              29,   296AA71010,      10,      19
  1342177280 = 2^28 * 5^1,        28,   6071712310,       7,      21.
On the penultimate row, letter "A" in the primorial base expansion stands for ten (10 in decimal), as 2^29 = 0*prime(0)# + 1*prime(1)# + 0*prime(2)# + 1*prime(3)# + 7*prime(4)# + 10*prime(5)# + 10*prime(6)# + 6*prime(7)# + 9*prime(8)# + 2*prime(9)#, where prime(n)# = A002110(n).
		

Crossrefs

Positions of records for -A350074(n).
Cf. also A369646, A369647.
After the initial 1, subsequence of A351038, after the two initial terms, subsequence of A350075.

Programs

  • PARI
    A051903(n) = if((1==n),0,vecmax(factor(n)[, 2]));
    A328114(n) = { my(s=0, p=2); while(n, s = max(s, (n%p)); n = n\p; p = nextprime(1+p)); (s); };
    A350074(n) = (A328114(n) - A051903(n));
    m=A350074(1); print1(1,", "); for(n=2,oo,x=A350074(n); if(x
    				
Previous Showing 31-40 of 386 results. Next