cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A378498 Squares where larger digits have smaller multiplicity.

Original entry on oeis.org

1, 4, 9, 100, 121, 225, 400, 484, 676, 900, 10000, 11881, 40000, 44944, 69696, 90000, 111556, 202500, 220900, 225625, 232324, 261121, 265225, 300304, 442225, 444889, 695556, 1000000, 1002001, 1020100, 1210000, 2250000, 2295225, 4000000, 4008004, 4080400, 4840000, 5112121, 6760000, 8008900, 9000000
Offset: 1

Views

Author

Erich Friedman, Nov 28 2024

Keywords

Comments

Conjecture: a(n) ≍ n^2. - Charles R Greathouse IV, Nov 29 2024

Crossrefs

Programs

  • Mathematica
    decreasingQ[L_]:=Max[Rest[(L-RotateRight[L])]]<0;
    sortedQ[n_]:=decreasingQ[Sort[Tally[IntegerDigits[n]]][[All,2]]];
    Select[Range[10000]^2, sortedQ]
  • PARI
    has(n)=my(d=matreduce(digits(n))[,2]); for(i=2,#d, if(d[i]>=d[i-1], return(0))); 1
    list(lim)=my(v=List()); for(n=1,sqrtint(lim\1), if(has(n^2), listput(v,n^2))); Vec(v) \\ Charles R Greathouse IV, Nov 29 2024

Formula

n^2 << a(n) << 1.001^n. - Charles R Greathouse IV, Nov 29 2024

A078256 Triangular numbers in which frequency of occurrence of every digit is same.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 190, 210, 231, 253, 276, 325, 351, 378, 406, 435, 465, 496, 528, 561, 630, 666, 703, 741, 780, 820, 861, 903, 946, 1035, 1275, 1326, 1378, 1485, 1540, 1596, 1653, 1830, 1953, 2016, 2145
Offset: 1

Views

Author

Amarnath Murthy, Nov 24 2002

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_] := n*(n + 1)/2;f[n_] := Block[{dc = DigitCount[n], s},s = Select[dc, Positive];Min @@ s == Max @@ s];Select[Array[T, 70, 0], f] (* Ray Chandler, May 11 2007 *)
  • PARI
    \\ here isok(k) tests if each digit k has equal frequency.
    isok(k)={my(f=vector(10)); foreach(digits(k), t, f[1+t]++); my(c=vecmax(f)); 0==#select(t->t>0&&tAndrew Howroyd, Sep 21 2024

Extensions

Offset changed by Andrew Howroyd, Sep 21 2024
Previous Showing 11-12 of 12 results.