cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A329578 First of three consecutive primes with common gap 48.

Original entry on oeis.org

3565931, 3653863, 3985903, 5425613, 5647361, 6126971, 6292081, 6532553, 7133983, 7360363, 7389493, 7700131, 7865833, 7956163, 8467903, 8708291, 8972701, 9203743, 9603361, 9863551, 10279813, 10971743, 11998391, 12225251, 12474251, 12620843, 12966881, 13288211, 13376261, 13543451
Offset: 1

Views

Author

M. F. Hasler, Jan 02 2020

Keywords

Crossrefs

Subsequence of A134123 (first of two primes with common gap 48).
A067388 (first of four primes with common gap 48) is a subsequence.
Cf. A047948, A052188, A052189, A052190, A052195, A052197, A052198, A089234 (analog for gaps 2, 4, 6, 12, 18, 24, ..., 60).

Programs

  • Magma
    [p:p in PrimesUpTo(14000000)| NextPrime(p)-p eq 48 and NextPrime(p+48)-p eq 96]; // Marius A. Burtea, Jan 03 2020
  • Mathematica
    Select[Partition[Prime[Range[900000]],3,1],Differences[#]=={48,48}&] [[All,1]] (* Harvey P. Dale, Aug 23 2021 *)
  • PARI
    vecextract( A134123, select(t->t==48, A134123[^1]-A134123[^-1], 1)) \\ Terms of A134123 with indices corresponding to first differences of 48: gives a(1..56) from A134123(1..10^4).
    

A128312 List of triples of primes with common difference 12.

Original entry on oeis.org

199, 211, 223, 1499, 1511, 1523, 4397, 4409, 4421, 4679, 4691, 4703, 7829, 7841, 7853, 9859, 9871, 9883, 11287, 11299, 11311, 11399, 11411, 11423, 11719, 11731, 11743, 12829, 12841, 12853, 15149, 15161, 15173, 16607, 16619, 16631, 17419
Offset: 1

Views

Author

Zerinvary Lajos, May 04 2007

Keywords

Examples

			199, 211, 223
1499, 1511, 1523
4397, 4409, 4421
4679, 4691, 4703
7829, 7841, 7853
9859, 9871, 9883
11287, 11299, 11311
11399, 11411, 11423
etc...
		

Crossrefs

Cf. A052188 (1st column).

Programs

  • Maple
    for i from 1 by 1 to 4000 do > if ithprime(i+1) = ithprime(i) +12 and ithprime(i+2) = ithprime(i) + 24 then print(ithprime(i),ithprime(i+1),ithprime(i+2)); > fi; > od;#
  • Mathematica
    s={};Do[p=Prime[n];If[NextPrime[p]==p+12&&NextPrime[p,2]==p+24,AppendTo[s,{p,p+12,p+24}]],{n,2100}];Flatten[s] (* James C. McMahon, Jan 07 2025 *)

A374719 Primes p such that p + 48 and p + 96 are also prime.

Original entry on oeis.org

5, 11, 13, 31, 41, 53, 61, 83, 101, 103, 131, 181, 263, 283, 353, 383, 461, 521, 523, 613, 643, 661, 691, 761, 811, 881, 991, 1013, 1021, 1153, 1181, 1201, 1231, 1483, 1511, 1523, 1531, 1571, 1693, 1783, 1901, 1931, 2083, 2293, 2341, 2351, 2671, 2693, 2741
Offset: 1

Views

Author

James S. DeArmon, Jul 17 2024

Keywords

Examples

			5 is a term because 5, 5+48, and 5+96 are all prime.
		

Crossrefs

Programs

Formula

a(n) >> n log^3 n. - Charles R Greathouse IV, Jul 25 2024
Previous Showing 11-13 of 13 results.