cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A250207 The number of quartic terms in the multiplicative group modulo n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 5, 1, 3, 3, 1, 1, 4, 3, 9, 1, 3, 5, 11, 1, 5, 3, 9, 3, 7, 1, 15, 2, 5, 4, 3, 3, 9, 9, 3, 1, 10, 3, 21, 5, 3, 11, 23, 1, 21, 5, 4, 3, 13, 9, 5, 3, 9, 7, 29, 1, 15, 15, 9, 4, 3, 5, 33, 4, 11, 3, 35, 3, 18, 9, 5, 9, 15, 3, 39, 1
Offset: 1

Views

Author

R. J. Mathar, Mar 02 2015

Keywords

Comments

In the character table of the multiplicative group modulo n there are phi(n) different characters. [This is made explicit for example by the number of rows in arXiv:1008.2547.] The set of the fourth powers of the characters in all representations has some cardinality, which defines the sequence.

Examples

			For n <= 6, the set of all characters in all representations consists of a subset of +1, -1, +i or -i. Their fourth powers are all +1, a single value, so a(n)=1 then.
For n=7, the set of characters is 1, -1, +-1/2 +- sqrt(3)*i/2, so their fourth powers are 1 or -1/2 +- sqrt(3)*i/2, which are three different values, so a(7)=3.
For n=11, the fourth powers of the characters may be 1, exp(+-2*i*Pi/5) or exp(+-4*i*Pi/5), which are 5 different values.
		

Crossrefs

Programs

  • Maple
    A250207 := proc(n)
        numtheory[phi](n)/A073103(n) ;
    end proc:
  • Mathematica
    a[n_] := EulerPhi[n]/Count[Range[0, n-1]^4 - 1, k_ /; Divisible[k, n]];
    Array[a, 80] (* Jean-François Alcover, Nov 20 2017 *)
    f[p_, e_] := (p - 1)*p^(e - 1)/If[Mod[p, 4] == 1, 4, 2]; f[2, e_] := If[e <= 3, 1, 2^(e - 4)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 10 2023 *)
  • PARI
    a(n)=my(f=factor(n)); prod(i=1,#f~, if(f[i,1]==2, 2^max(0,f[i,2]-4), f[i,1]^(f[i,2]-1)*(f[i,1]-1)/if(f[i,1]%4==1,4,2))) \\ Charles R Greathouse IV, Mar 02 2015

Formula

a(n) = A000010(n)/A073103(n).
Multiplicative with a(2^e) = 1 for e<=3; a(2^e) = 2^(e-4) for e>=4; a(p^e) = p^(e-1)*(p-1)/4 for e>=1 and p == 1 (mod 4); a(p^e) = p^(e-1)*(p-1)/2 for e>=1 and p == 3 (mod 4). (Derived from A073103.) - R. J. Mathar, Oct 13 2017

A257302 Number of 4th power nonresidues modulo n.

Original entry on oeis.org

0, 0, 1, 2, 3, 2, 3, 6, 5, 6, 5, 8, 9, 6, 11, 14, 12, 10, 9, 16, 13, 10, 11, 20, 19, 18, 17, 20, 21, 22, 15, 28, 21, 24, 27, 28, 27, 18, 31, 36, 30, 26, 21, 32, 37, 22, 23, 44, 27, 38, 41, 44, 39, 34, 43, 48, 37, 42, 29, 52, 45, 30, 47, 58, 57, 42, 33, 58
Offset: 1

Views

Author

Stanislav Sykora, Apr 19 2015

Keywords

Comments

a(n) is the number of values r, 0<=r=0, (m^p)%n != r.

Crossrefs

Cf. A095972 (p=2), A257301 (p=3), A257303 (p=5).

Programs

  • Mathematica
    Table[Length[Complement[Range[n - 1], Union[Mod[Range[n]^4, n]]]], {n, 100}] (* Vincenzo Librandi, Apr 20 2015 *)
  • PARI
    nrespowp(n,p) = {my(v=vector(n),d=0);
      for(r=0,n-1,v[1+(r^p)%n]+=1);
      for(k=1,n,if(v[k]==0,d++));
      return(d);}
    a(n) = nrespowp(n,4)

Formula

a(n) = n - A052273(n).
Satisfies a(n) <= n-2 (residues 0 and 1 are always present).

A096094 Analog of A094091 for S=3.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1
Offset: 1

Views

Author

Joshua Zucker, Jul 23 2006

Keywords

Comments

A finite sequence of length 23.
The old entry with this A-number was a duplicate of A052273.

Crossrefs

A337868 Number of distinct residues of x^r (mod n), x=0..n-1, r=2, ..., n.

Original entry on oeis.org

0, 2, 3, 3, 5, 6, 7, 6, 7, 10, 11, 9, 13, 14, 15, 11, 17, 14, 19, 15, 21, 22, 23, 17, 21, 26, 20, 21, 29, 30, 31, 21, 33, 34, 35, 21, 37, 38, 39, 28, 41, 42, 43, 33, 35, 46, 47, 32, 43, 42, 51, 39, 53, 40, 55, 39, 57, 58, 59, 45, 61, 62, 49, 41, 65, 66, 67, 51, 69, 70, 71
Offset: 1

Views

Author

Keywords

Comments

Sequence is submultiplicative: a(m*n) <= a(m) * a(n) for m,n coprime. - Charles R Greathouse IV, Dec 19 2022
For n > 1, this is the number of distinct residues of x^r (mod n) with r > 1, that is, the restriction r <= n is not needed. - Charles R Greathouse IV, Dec 22 2022

Crossrefs

For number of k-th power residues mod n, see A000224 (k=2), A052273 (k=4), A052274 (k=5), A052275 (k=6), A085310 (k=7), A085311 (k=8), A085312 (k=9), A085313 (k=10), A085314 (k=12), A228849 (k=13).

Programs

  • Mathematica
    T[n_] := Union@Mod[Flatten@Table[Range[n]^i, {i, 2, n}], n];
    Table[Length[T@n], {n, 1, 144}]
  • PARI
    a(n)=if(n==1, return(0)); my(s); for(k=0,n-1, my(x=Mod(k,n)); forprime(p=2,n, if(ispower(x,p), s++; break))); s\\ Charles R Greathouse IV, Dec 22 2022

Formula

For n > 1, a(n) >= A000010(n) + 1 as all invertible elements of Z/nZ are powers, as is 0. (Conjecture: equality holds exactly for A000430, the primes and squares of primes.) - Charles R Greathouse IV, Dec 23 2022
Previous Showing 11-14 of 14 results.