cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A002991 Number of n-node trees with a forbidden limb of length 5.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 10, 21, 43, 97, 215, 503, 1187, 2876, 7033, 17510, 43961, 111664, 285809, 737632, 1915993, 5008652, 13163785, 34774873, 92282214, 245930746, 657931603, 1766481135, 4758553683, 12858286083, 34844908142, 94681272368
Offset: 0

Views

Author

Keywords

Comments

A tree with a forbidden limb of length k is a tree where the path from any leaf inward hits a branching node or another leaf within k steps. - Christian G. Bower, Dec 15 1999

References

  • A. J. Schwenk, Almost all trees are cospectral, pp. 275-307 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory):
    g:= proc(n) g(n):= `if`(n=0, 1, add(add(d*(g(d-1)-
          `if`(d=5, 1, 0)), d=divisors(j))*g(n-j), j=1..n)/n)
        end:
    a:= n-> `if`(n=0, 1, g(n-1)+(`if`(irem(n, 2, 'r')=0,
             g(r-1), 0)-add(g(i-1)*g(n-i-1), i=1..n-1))/2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 06 2014
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1, Sum[Sum[d*(g[d-1]-If[d == 5, 1, 0]), {d, Divisors[j] }]*g[n-j], {j, 1, n}]/n]; a[n_] := If[n == 0, 1, g[n-1] + (If[Mod[n, 2 ] == 0, g[Quotient[n, 2]-1], 0] - Sum[g[i-1]*g[n-i-1], {i, 1, n-1}])/2]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 26 2015, after Alois P. Heinz *)

Formula

G.f.: 1 + B(x) + (B(x^2) - B(x)^2)/2 where B(x) is g.f. of A052328. - Christian G. Bower, Dec 15 1999
a(n) ~ c * d^n / n^(5/2), where d = 2.9447916575019743775137795109303..., c = 0.521642401804532770865780146005... . - Vaclav Kotesovec, Aug 25 2014

Extensions

More terms from Christian G. Bower, Dec 15 1999

A052325 Number of asymmetric rooted trees with a forbidden limb of length 3.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 4, 8, 15, 30, 60, 122, 249, 513, 1061, 2210, 4620, 9708, 20472, 43337, 92023, 196018, 418653, 896485, 1924154, 4139014, 8921349, 19266067, 41679483, 90318082, 196020800, 426055601, 927317334, 2020949226, 4409764169
Offset: 1

Views

Author

Christian G. Bower, Dec 15 1999

Keywords

Comments

A rooted tree with a forbidden limb of length k is a rooted tree where the path from any leaf inward hits a branching node or the root within k steps.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember;
          `if`(n=0, 1, `if`(i<1, 0, add(binomial(a(i)-
          `if`(i=3, 1, 0), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> `if`(n<1, 1, b(n-1, n-1)):
    seq(a(n), n=1..50);  # Alois P. Heinz, Jul 06 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[a[i]- If[i==3, 1, 0], j]*b[n-i*j, i-1], {j, 0, n/i}]]];
    a[n_] := If[n<1, 1, b[n-1, n-1]];
    Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Mar 01 2016, after Alois P. Heinz *)

Formula

a(n) satisfies a = SHIFT_RIGHT(WEIGH(a-b)) where b(3)=1, b(k)=0 if k != 3.
a(n) ~ c * d^n / n^(3/2), where d = 2.27671458388797627098091744865..., c = 0.2935911773459468433271794078... . - Vaclav Kotesovec, Aug 25 2014

A052327 Number of rooted trees with a forbidden limb of length 4.

Original entry on oeis.org

1, 1, 2, 4, 8, 18, 43, 102, 251, 625, 1584, 4055, 10509, 27451, 72307, 191697, 511335, 1370995, 3693452, 9991671, 27133149, 73934800, 202096673, 553999573, 1522651908, 4195087022, 11583820212, 32052475655, 88860186023
Offset: 1

Views

Author

Christian G. Bower, Dec 15 1999

Keywords

Comments

A rooted tree with a forbidden limb of length k is a rooted tree where the path from any leaf inward hits a branching node or the root within k steps.

Crossrefs

Programs

  • Maple
    with(numtheory):
    g:= proc(n) g(n):= `if`(n=0, 1, add(add(d*(g(d-1)-
          `if`(d=4, 1, 0)), d=divisors(j))*g(n-j), j=1..n)/n)
        end:
    a:= n-> g(n-1):
    seq(a(n), n=1..35);  # Alois P. Heinz, Jul 04 2014
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1, Sum[DivisorSum[j, #*(g[# - 1] - If[# == 4, 1, 0])&] * g[n - j], {j, 1, n}]/n];
    a[n_] := g[n - 1];
    Table[a[n], {n, 1, 35}] (* Jean-François Alcover, Apr 04 2017, after Alois P. Heinz *)

Formula

a(n) satisfies a = SHIFT_RIGHT(EULER(a-b)) where b(4)=1, b(k)=0 if k != 4.
a(n) ~ c * d^n / n^(3/2), where d = 2.9224691962496551739365155005926289..., c = 0.43112017460637374030857983498164... . - Vaclav Kotesovec, Aug 25 2014

A052320 Number of labeled trimmed trees with n nodes.

Original entry on oeis.org

1, 1, 1, 0, 4, 5, 96, 1057, 14848, 235881, 4234240, 84815621, 1877090304, 45524670061, 1201345331200, 34283233751145, 1052350187831296, 34582597023733073, 1211614017182760960, 45088964565749965837
Offset: 0

Views

Author

Christian G. Bower, Dec 15 1999

Keywords

Comments

A trimmed tree is a tree with a forbidden limb of length 2.
A tree with a forbidden limb of length k is a tree where the path from any leaf inward hits a branching node or another leaf within k steps.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1+x^3/2+x^4/2-LambertW[-x/E^(x^2)]-(LambertW[-x/E^(x^2)])^2/2, {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Mar 29 2014 *)

Formula

E.g.f.: 1 + x^3/2 + x^4/2 + B(x) - B(x)^2/2 where B(x) is e.g.f. of A052318.
a(n) ~ (1+LambertW(-2*exp(-2)))^(3/2) * exp((n*LambertW(-2*exp(-2)))/2) * n^(n-2). - Vaclav Kotesovec, Mar 29 2014

A052323 Number of labeled trees with a forbidden limb of length 3.

Original entry on oeis.org

1, 1, 1, 3, 4, 65, 576, 5887, 92464, 1680345, 34041520, 774906011, 19537590744, 540890740117, 16321259150392, 533305854910935, 18764822871806176, 707498057530634033, 28460428902580264416, 1216828054782241792435
Offset: 0

Views

Author

Christian G. Bower, Dec 15 1999

Keywords

Comments

A tree with a forbidden limb of length k is a tree where the path from any leaf inward hits a branching node or another leaf within k steps.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1+x^4/2+x^5/2+x^6/2-LambertW[-x*E^(-x^3)]-(LambertW[-x*E^(-x^3)])^2/2, {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Mar 29 2014 *)

Formula

E.g.f.: 1+x^4/2+x^5/2+x^6/2+B(x)-B(x)^2/2 where B(x) is e.g.f. of A052322.
a(n) ~ (1+LambertW(-3*exp(-3)))^(3/2) * exp(n/3*LambertW(-3*exp(-3))) * n^(n-2). - Vaclav Kotesovec, Mar 29 2014

A052326 Number of asymmetric trees with a forbidden limb of length 3.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 6, 11, 25, 49, 105, 211, 444, 903, 1880, 3865, 8042, 16658, 34764, 72484, 151856, 318418, 669934, 1411637, 2982407, 6311760, 13387127, 28442458, 60543586, 129084965, 275683061, 589660911, 1263128375
Offset: 0

Views

Author

Christian G. Bower, Dec 15 1999

Keywords

Comments

A tree with a forbidden limb of length k is a tree where the path from any leaf inward hits a branching node or another leaf within k steps.

Crossrefs

Formula

G.f.: 1 + B(x) + x^4 + x^5 + x^6 - (B(x^2) + B(x)^2)/2 where B(x) is g.f. of A052325.
a(n) ~ c * d^n / n^(5/2), where d = 2.2767145838879762709809174486..., c = 0.15900430026983804503695298... . - Vaclav Kotesovec, Aug 25 2014

Extensions

More terms, formula and comments from Christian G. Bower, Dec 15 1999
Typo in cross-reference corrected by Vaclav Kotesovec, Aug 25 2014

A002990 Number of n-node trees with a forbidden limb of length 4.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 5, 9, 19, 38, 86, 188, 439, 1026, 2472, 5997, 14835, 36964, 93246, 236922, 607111, 1565478, 4062797, 10599853, 27797420, 73224806, 193709710, 514406793, 1370937140, 3665714528, 9831891555, 26445886506, 71325268179
Offset: 0

Views

Author

Keywords

Comments

A tree with a forbidden limb of length k is a tree where the path from any leaf inward hits a branching node or another leaf within k steps.

References

  • A. J. Schwenk, Almost all trees are cospectral, pp. 275-307 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory):
    g:= proc(n) g(n):= `if`(n=0, 1, add(add(d*(g(d-1)-
          `if`(d=4, 1, 0)), d=divisors(j))*g(n-j), j=1..n)/n)
        end:
    a:= n-> `if`(n=0, 1, g(n-1)+(`if`(irem(n, 2, 'r')=0,
             g(r-1), 0)-add(g(i-1)*g(n-i-1), i=1..n-1))/2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 06 2014
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1, Sum[Sum[d*(g[d-1]-If[d == 4, 1, 0]), {d, Divisors[j] }]*g[n-j], {j, 1, n}]/n]; a[n_] := If[n == 0, 1, g[n-1] + (If[Mod[n, 2 ] == 0, g[Quotient[n, 2]-1], 0] - Sum[g[i-1]*g[n-i-1], {i, 1, n-1}])/2]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 26 2015, after Alois P. Heinz *)

Formula

G.f.: 1 + B(x) + (B(x^2) - B(x)^2)/2 where B(x) is g.f. of A052327.
a(n) ~ c * d^n / n^(5/2), where d = 2.9224691962496551739365155005926..., c = 0.503471518908815272581177797536... . - Vaclav Kotesovec, Aug 25 2014

Extensions

More terms, formula and comments from Christian G. Bower, Dec 15 1999

A284417 Triangular array read by rows. T(n,k) is the number of rooted labeled trees on n nodes with exactly k vertices whose unique descendent is a leaf, n >= 1, 0 <= k <= floor((n-1)/2) + delta_{2,n}.

Original entry on oeis.org

1, 0, 2, 3, 6, 16, 48, 145, 420, 60, 1536, 4800, 1440, 19579, 65730, 31500, 840, 290816, 1053696, 698880, 53760, 4942305, 19332936, 16367400, 2388960, 15120, 94689280, 399052800, 410296320, 93542400, 2419200, 2020278931, 9146127870, 11044008360, 3526261200, 200415600, 332640, 47523053568, 230339788800, 319018106880, 133013422080, 12986265600, 127733760
Offset: 1

Views

Author

Geoffrey Critzer, Mar 26 2017

Keywords

Comments

Column k=0 is A052318(n) for n>2.
Row sums = n^(n-1) = A000169(n).

Examples

			Triangle begins
       1,
       0,       2,
       3,       6,
      16,      48,
     145,     420,     60,
    1536,    4800,   1440,
   19579,   65730,  31500,   840,
  290816, 1053696, 698880, 53760,
  ...
T(3,1)=6 because there are 6 labeled rooted trees (paths) o-o-o and these 6 trees have 1 vertex whose only descendent is a leaf. T(3,0) = 3 because there are 3 labeled trees of the form
    o
   / \
  o   o
and these 3 trees have no such vertices.
		

Crossrefs

Cf. A055302.

Programs

  • Mathematica
    nn = 10; Range[0, nn]! CoefficientList[Series[-z^2 + u z^2 - ProductLog[-E^((-1 + u) z^2) z], {z, 0, nn}], {z, u}] // Grid

Formula

E.g.f. satisfies: A(x,y) = x exp(A(x,y)) - x^2 + y x^2.
Previous Showing 11-18 of 18 results.