cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A258088 Numbers n such that n is the average of four consecutive primes n-5, n-1, n+1 and n+5.

Original entry on oeis.org

12, 18, 42, 102, 108, 228, 312, 462, 858, 882, 1092, 1302, 1428, 1488, 1872, 1998, 2688, 3462, 4518, 4788, 5232, 5652, 6828, 7878, 8292, 10458, 13692, 13878, 15732, 16062, 16068, 16188, 17388, 19422, 19428, 20748, 21018, 21318, 22278, 23058
Offset: 1

Views

Author

Karl V. Keller, Jr., May 19 2015

Keywords

Comments

Previous name was: Numbers n such that n is the average of some twin prime pair p, q (q=p+2) (i.e., n=p+1=q-1) where p-4, p, q, and q+4 are consecutive primes.
This is a subsequence of A014574 (average of twin prime pairs) and A256753.

Examples

			12 is the average of the four consecutive primes 7, 11, 13, 17.
18 is the average of the four consecutive primes 13, 17, 19, 23.
		

Crossrefs

Cf. A014574, A052378, A077800 (twin primes), A256753.

Programs

  • Mathematica
    a={};Do[If[Prime[x + 3] - Prime[x]==10, AppendTo[a, Prime[x]+ 5]], {x, 1, 4000}]; a (* Vincenzo Librandi, Jul 18 2015 *)
    Mean/@Select[Partition[Prime[Range[3000]],4,1],Differences[#]=={4,2,4}&] (* Harvey P. Dale, Sep 18 2018 *)
  • PARI
    is(n)=isprime(n-5)&&isprime(n-1)&&isprime(n+1)&&isprime(n+5) \\ Charles R Greathouse IV, Aug 28 2015
  • Python
    from sympy import isprime,prevprime,nextprime
    for i in range(0,50001,2):
      if isprime(i-1) and isprime(i+1):
        if prevprime(i-1) == i-5 and nextprime(i+1) == i+5: print (i,end=', ')
    

Formula

a(n) = A052378(n) + 5. - Karl V. Keller, Jr., Jul 17 2015

Extensions

New name from Karl V. Keller, Jr., Jul 21 2015

A261541 Least positive integer m such that both m and m*n belong to the set {k>0: prime(k)+2, prime(k)+6, prime(k)+8 are all prime}.

Original entry on oeis.org

3, 358712, 34772, 79631, 1822685, 22865, 2066, 2593722, 26, 3418900, 26, 711611, 286, 1493190, 882854, 513312, 1707237, 788232, 913695, 1980985, 7147, 443152, 479580, 2589105, 865432, 265243, 103641, 160536, 398360, 851672
Offset: 1

Views

Author

Zhi-Wei Sun, Aug 24 2015

Keywords

Comments

Conjecture: (i) Each positive rational number r can be written as m/n with m and n in the set {k>0: prime(k)+2, prime(k)+6 and prime(k)+8 are all prime}.
(ii) Any positive rational number r can be written as m/n with m and n in the set {k>0: prime(k)+4, prime(k)+6 and prime(k)+10 are all prime}.
For example, 3/4 = 20723892/27631856, and prime(20723892)+2 = 387875561+2 = 387875563, prime(20723892)+6 = 387875567, prime(20723892)+8 = 387875569, prime(27631856)+2 = 525608591+2 =525608593, prime(27631856)+6 = 525608597, prime(27631856)+8 = 525608599 are all prime. Also, 3/4 = 599478/799304, and prime(599478)+4 = 8951857+4 = 8951861, prime(599478)+6 = 8951863, prime(599478)+10 = 8951867, prime(799304)+4 = 12183943+4 = 12183947, prime(799304)+6 = 12183949, prime(799304)+10 = 12183953 are all prime.
Part (i) of the conjecture implies that there are infinitely many primes p with p+2, p+6 and p+8 all prime, while part (ii) implies that there are infinitely many primes p with p+4, p+6 and p+10 all prime.

Examples

			a(1) = 3 since 3*1 = 3, and prime(3)+2 = 5+2 =7, prime(3)+6 = 11 and prime(3)+8 = 13 are all prime.
a(2) = 358712 since prime(358712)+2 = 5158031+2 = 5158033, prime(358712)+6 = 5158037, prime(358712)+8 = 5158039, prime(358712*2)+2 = 10852601+2 = 10852603, prime(358712*2)+6 = 10852607 and prime(358712*2)+8 = 10852609 are all prime.
		

References

  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    f[n_]:=Prime[n]
    PQ[k_]:=PrimeQ[f[k]+2]&&PrimeQ[f[k]+6]&&PrimeQ[f[k]+8]
    Do[k=0;Label[bb];k=k+1;If[PQ[k]&&PQ[k*n],Goto[aa],Goto[bb]];Label[aa];Print[n," ", k];Continue,{n,1,30}]

A384299 Primes p such that p + 8, p + 12 and p + 20 are also primes.

Original entry on oeis.org

11, 59, 89, 389, 479, 1439, 1559, 1601, 2531, 2699, 3209, 3449, 3911, 5639, 5849, 7529, 8081, 8669, 10091, 12269, 12401, 12899, 13151, 14411, 14759, 17021, 19421, 21011, 21851, 22271, 23189, 25931, 26099, 28649, 28859, 31139, 31469, 33191, 33569, 36551, 39659, 40751, 42689, 43391, 43781, 44111
Offset: 1

Views

Author

Alexander Yutkin, May 25 2025

Keywords

Comments

Initial members of prime quartets that correspond to the difference pattern [8, 4, 8].

Examples

			p=89: 89+8=97, 89+12=101, 89+20=109 —> prime quartet: (89, 97, 101, 109).
		

Crossrefs

Cf. A136162 [2, 4, 2], A052378 [4, 2, 4], A382810 [6, 4, 6].

Programs

  • Maple
    q:= n-> andmap(i-> isprime(n+4*i), [0,2,3,5]):
    select(q, [5+6*i$i=1..7351])[];  # Alois P. Heinz, May 29 2025
  • Mathematica
    Select[Prime[Range[4591]],AllTrue[#+{8,12,20},PrimeQ]&] (* James C. McMahon, May 29 2025 *)

A383396 Primes p such that p + 6, p + 10, p + 12, p + 16 and p + 22 are also primes.

Original entry on oeis.org

7, 31, 2677, 35521, 42451, 44257, 55807, 93481, 118891, 198817, 221707, 234181, 313981, 393571, 560227, 669847, 1107781, 1210387, 1596367, 1616611, 1738411, 2710921, 3194551, 3377587, 3441931, 3484561, 3586537, 3699181, 3887551, 3904897, 4095661, 4192261, 4239721
Offset: 1

Views

Author

Alexander Yutkin, Apr 25 2025

Keywords

Comments

Initial members of prime sextuples that correspond to the difference pattern [6, 4, 2, 4, 6].

Examples

			p = 2677: 2677 + 6 = 2683, 2677 + 10 = 2687, 2677 + 12 = 2689, 2677 + 16 = 2693, 2677 + 22 = 2699 -> prime sextuple: (2677, 2683, 2687, 2689, 2693, 2699).
		

Crossrefs

Cf. A052378 [4, 2, 4], A022008 [4, 2, 4, 2, 4].

Programs

  • Mathematica
    Select[Prime[Range[298900]], AllTrue[#+{6,10,12,16,22}, PrimeQ]&] (* James C. McMahon, May 02 2025 *)

Formula

a(n) == 1 (mod 6).
Previous Showing 21-24 of 24 results.