A353994
Expansion of e.g.f. 1/(1 + log(1 - x) * (exp(x) - 1)).
Original entry on oeis.org
1, 0, 2, 6, 42, 305, 2815, 29792, 362432, 4952481, 75239143, 1257202584, 22918653428, 452620972245, 9626556838015, 219367419292972, 5332164894151648, 137709755844024929, 3765736630207259055, 108696751776637007080, 3302628833563666988740
Offset: 0
A354315
Expansion of e.g.f. 1/(1 + x/2 * log(1 - 2 * x)).
Original entry on oeis.org
1, 0, 2, 6, 56, 480, 5664, 75600, 1182208, 20829312, 410768640, 8943010560, 213187497984, 5520777799680, 154333888579584, 4631752470159360, 148523272512307200, 5067610703150284800, 183308248516478828544, 7006773595450681589760, 282194468488468121518080
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x/2*log(1-2*x))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i!*sum(j=2, i, 2^(j-2)/(j-1)*v[i-j+1]/(i-j)!)); v;
-
a(n) = n!*sum(k=0, n\2, 2^(n-2*k)*k!*abs(stirling(n-k, k, 1))/(n-k)!);
A354316
Expansion of e.g.f. 1/(1 + x/3 * log(1 - 3 * x)).
Original entry on oeis.org
1, 0, 2, 9, 96, 1170, 18324, 340200, 7360128, 181476288, 5024611440, 154319988240, 5206240427904, 191372822989920, 7612497915813504, 325791049256094240, 14925809593280332800, 728828735500650355200, 37786217117138333005824
Offset: 0
-
With[{nn=20},CoefficientList[Series[1/(1+x/3 Log[1-3x]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 06 2023 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x/3*log(1-3*x))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i!*sum(j=2, i, 3^(j-2)/(j-1)*v[i-j+1]/(i-j)!)); v;
-
a(n) = n!*sum(k=0, n\2, 3^(n-2*k)*k!*abs(stirling(n-k, k, 1))/(n-k)!);
A375558
Expansion of e.g.f. 1 / (1 + x * log(1 - x^4/24)).
Original entry on oeis.org
1, 0, 0, 0, 0, 5, 0, 0, 0, 315, 6300, 0, 0, 150150, 6306300, 94594500, 0, 268017750, 17689171500, 549972423000, 7332965640000, 1283268987000, 117632990475000, 5681673439942500, 155840185781280000, 1961530116170625000, 1606200062942475000
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x*log(1-x^4/24))))
-
a(n) = n!*sum(k=0, n\4, (n-4*k)!*abs(stirling(k, n-4*k, 1))/(24^k*k!));
A375671
Expansion of e.g.f. 1 / (1 + x * log(1 - x))^2.
Original entry on oeis.org
1, 0, 4, 6, 88, 420, 5148, 44520, 587424, 7203168, 109106640, 1689621120, 29620245312, 546547098240, 10989238893696, 233884517368320, 5324618721070080, 128058198711690240, 3260308438558826496, 87336328336058603520, 2459915920512955929600
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x*log(1-x))^2))
-
a(n) = n!*sum(k=0, n\2, (k+1)!*abs(stirling(n-k, k, 1))/(n-k)!);
A375684
Expansion of e.g.f. 1 / (1 - x * log(1 - x)).
Original entry on oeis.org
1, 0, -2, -3, 16, 90, -204, -4200, -5312, 254016, 1586160, -17970480, -294932736, 790115040, 54224747136, 216483714720, -10481294822400, -137535688281600, 1798183916660736, 58769251106526720, -95282580797291520, -23811620975395061760, -203282679617698222080
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x*log(1-x))))
-
a(n) = n!*sum(k=0, n\2, (-1)^k*k!*abs(stirling(n-k, k, 1))/(n-k)!);
A377438
E.g.f. satisfies A(x) = (1 - x * log(1 - x) * A(x))^2.
Original entry on oeis.org
1, 0, 4, 6, 136, 660, 13668, 128520, 2846240, 41368320, 1021615920, 20260896480, 564541372800, 14159468157120, 445236762450816, 13446791658256320, 474901138629918720, 16708336544212992000, 658279512232521209856, 26360704394322974161920, 1150065728368040063784960
Offset: 0
-
a(n) = 2*n!*sum(k=0, n\2, (2*k+1)!*abs(stirling(n-k, k, 1))/((n-k)!*(k+2)!));
A377691
E.g.f. satisfies A(x) = (1 - x * log(1 - x) * A(x))^3.
Original entry on oeis.org
1, 0, 6, 9, 312, 1530, 47952, 468720, 15273696, 238738752, 8404102080, 185234979600, 7145001364608, 204957002147040, 8705298805015680, 307822476591957600, 14400927608439260160, 604208707715034777600, 31065769175985079142400, 1504405685073556864627200
Offset: 0
-
a(n) = 3*n!*sum(k=0, n\2, (3*k+2)!*abs(stirling(n-k, k, 1))/((n-k)!*(2*k+3)!));
A355665
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 + x^k * log(1 - x)).
Original entry on oeis.org
1, 1, 1, 1, 0, 3, 1, 0, 2, 14, 1, 0, 0, 3, 88, 1, 0, 0, 6, 32, 694, 1, 0, 0, 0, 12, 150, 6578, 1, 0, 0, 0, 24, 40, 1524, 72792, 1, 0, 0, 0, 0, 60, 900, 12600, 920904, 1, 0, 0, 0, 0, 120, 240, 6048, 147328, 13109088, 1, 0, 0, 0, 0, 0, 360, 1260, 43680, 1705536, 207360912
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 0, 0, 0, 0, 0, 0, ...
3, 2, 0, 0, 0, 0, 0, ...
14, 3, 6, 0, 0, 0, 0, ...
88, 32, 12, 24, 0, 0, 0, ...
694, 150, 40, 60, 120, 0, 0, ...
6578, 1524, 900, 240, 360, 720, 0, ...
-
T(n, k) = n!*sum(j=0, n\(k+1), j!*abs(stirling(n-k*j, j, 1))/(n-k*j)!);
A375687
Expansion of e.g.f. 1 / sqrt(1 + 2 * x * log(1 - x)).
Original entry on oeis.org
1, 0, 2, 3, 44, 210, 2934, 26040, 404592, 5302584, 95029560, 1632252600, 33865401096, 712672337520, 16986980278800, 420485947572600, 11386595338156800, 322890555922925760, 9820815078397642560, 313247186941438569600, 10588974153880701225600
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/sqrt(1+2*x*log(1-x))))
-
a001147(n) = prod(k=0, n-1, 2*k+1);
a(n) = n!*sum(k=0, n, a001147(k)*abs(stirling(n-k, k, 1))/(n-k)!);