A137422 Triangle T(n,k) = A053120(n-1,k) + A053120(n-1,k-1), read by rows.
0, 1, 1, 0, 1, 1, -1, -1, 2, 2, 0, -3, -3, 4, 4, 1, 1, -8, -8, 8, 8, 0, 5, 5, -20, -20, 16, 16, -1, -1, 18, 18, -48, -48, 32, 32, 0, -7, -7, 56, 56, -112, -112, 64, 64, 1, 1, -32, -32, 160, 160, -256, -256, 128, 128, 0, 9, 9, -120, -120, 432, 432, -576, -576, 256, 256
Offset: 0
Examples
Triangle begins 0; 1, 1; 0, 1, 1; -1, -1, 2, 2; 0, -3, -3, 4, 4; 1, 1, -8, -8, 8, 8; 0, 5, 5, -20, -20, 16, 16; -1, -1, 18, 18, -48, -48, 32, 32; 0, -7, -7, 56, 56, -112, -112, 64, 64; 1, 1, -32, -32, 160, 160, -256, -256, 128, 128; 0, 9, 9, -120, -120, 432, 432, -576, -576, 256, 256;
Crossrefs
Cf. A053120.
Programs
-
Maple
A053120 := proc(n, k) if n <0 or k <0 then 0 ; else T(n, x) ; coeftayl(%, x=0, k) ; end if; end proc: A137422 := proc(n,k) A053120(n-1,k)+A053120(n-1,k-1) end proc: # R. J. Mathar, Sep 10 2013
-
Mathematica
(* Chebyshev A053120 polynomials*) (* Recursive root shifted polynomials*) Q[x, 0] = 1; Q[x, 1] = x + 1; Q[x_, n_] := (x + 1)*ChebyshevT[n - 1, x]; Table[ExpandAll[Q[x, n]], {n, 0, 10}]; a0 = Table[CoefficientList[Q[x, n], x], {n, 0, 10}]; Flatten[a0]
Extensions
T(0,0) set to a rationalized 0. - R. J. Mathar, Sep 10 2013
Comments