A053211
Cototients of consecutive pure powers of primes.
Original entry on oeis.org
2, 4, 3, 8, 5, 9, 16, 7, 32, 27, 11, 25, 64, 13, 81, 128, 17, 49, 19, 256, 23, 125, 243, 29, 31, 512, 121, 37, 41, 43, 1024, 729, 169, 47, 343, 53, 625, 59, 61, 2048, 67, 289, 71, 73, 79, 2187, 361, 83, 89, 4096, 97, 101, 103, 107, 109, 529, 113, 1331, 3125, 127
Offset: 1
The 10th pure power of prime (but not a prime) is 81, so a(10) = 81 - EulerPhi(81) = 81 - 54 = 27. For n=p^2, a(n)=p.
-
Map[# - EulerPhi@ # &, Select[Range[16200], And[! PrimeQ@ #, PrimePowerQ@ #] &]] (* Michael De Vlieger, Jun 11 2018 *)
With[{nn = 2^14}, Map[Times @@ Map[#1^(#2 - 1) & @@ FactorInteger[#][[1]]] &, Select[Union@ Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}], PrimePowerQ] ] ] (* Michael De Vlieger, Mar 11 2023 *)
A057789
a(n) = Sum_{k = 1..n, gcd(k,n)=1} k*(n-k).
Original entry on oeis.org
0, 1, 4, 6, 20, 10, 56, 44, 84, 60, 220, 92, 364, 182, 280, 344, 816, 318, 1140, 520, 840, 770, 2024, 760, 2100, 1300, 2196, 1540, 4060, 1240, 4960, 2736, 3520, 2992, 4760, 2580, 8436, 4218, 5928, 4240, 11480, 3612, 13244, 6380, 8040, 7590, 17296, 6128
Offset: 1
Since 1, 3, 5 and 7 are relatively prime to 8 and are <= 8, a(8) = 1*(8-1) +3*(8-3) +5*(8-5) +7*(8-7) = 44.
-
f:= proc(n) local i;
2*add(`if`(igcd(i,n)=1, i*(n-i),0),i=1..n/2)
end proc:
f(2):= 1:
map(f, [$1..100]); # Robert Israel, Sep 29 2019
-
a[n_] := 2 Sum[Boole[CoprimeQ[k, n]] k (n - k), {k, 1, n/2}];
a[2] = 1;
Array[a, 100] (* Jean-François Alcover, Aug 16 2020, after Maple *)
-
a(n) = sum(k=1, n, if (gcd(n,k)==1, k*(n-k))); \\ Michel Marcus, Sep 29 2019
A368197
Triangle read by rows: T(n,k) = Sum_{z=1..n} Sum_{y=1..n} Sum_{x=1..n} [GCD(f(x,y,z), n) = k], where f(x,y,z) = x^2 + y^2 - z^2.
Original entry on oeis.org
1, 4, 4, 18, 0, 9, 32, 8, 0, 24, 100, 0, 0, 0, 25, 72, 72, 36, 0, 0, 36, 294, 0, 0, 0, 0, 0, 49, 256, 64, 0, 96, 0, 0, 0, 96, 486, 0, 144, 0, 0, 0, 0, 0, 99, 400, 400, 0, 0, 100, 0, 0, 0, 0, 100, 1210, 0, 0, 0, 0, 0, 0, 0, 0, 0, 121
Offset: 1
Triangle begins:
1;
4, 4;
18, 0, 9;
32, 8, 0, 24;
100, 0, 0, 0, 25;
72, 72, 36, 0, 0, 36;
294, 0, 0, 0, 0, 0, 49;
256, 64, 0, 96, 0, 0, 0, 96;
486, 0, 144, 0, 0, 0, 0, 0, 99;
400, 400, 0, 0, 100, 0, 0, 0, 0, 100;
1210, 0, 0, 0, 0, 0, 0, 0, 0, 0, 121;
...
-
nn = 11; p = 2; f = x^p + y^p - z^p; Flatten[Table[Table[Sum[Sum[Sum[If[GCD[f, n] == k, 1, 0], {x, 1, n}], {y, 1, n}], {z, 1, n}], {k, 1, n}], {n, 1, nn}]]
A085646
Sum of the entries in the character table of the group GL(2,Z_n).
Original entry on oeis.org
1, 5, 24, 52, 120, 120, 336, 496, 654, 600, 1320, 1248, 2184, 1680, 2880
Offset: 1
Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 11 2003
A288572
a(n) = smallest positive integer k such that (n^3)^k == 1 mod (n+1)^3.
Original entry on oeis.org
1, 6, 16, 50, 6, 98, 64, 54, 50, 242, 48, 338, 98, 150, 256, 578, 54, 722, 400, 294, 242, 1058, 192, 1250, 338, 486, 784, 1682, 150, 1922, 1024, 726, 578, 2450, 432, 2738, 722, 1014, 1600, 3362, 294, 3698, 1936, 1350, 1058, 4418, 768, 4802, 1250, 1734, 2704, 5618, 486, 6050, 3136, 2166, 1682, 6962
Offset: 1
5^3 = 125, 6^3 = 216, 125^6 = 14551915228366851806640625 == 1 mod 216, so a(5) = 6.
(6^3)^98 == 1 mod 7^3, so a(6) = 98.
- Robert Israel, Table of n, a(n) for n = 1..10000
- K. Kashihara, Comments and Topics on Smarandache Notions and Problems, Erhus University Press, 1996, 50 pages. See page 45.
- K. Kashihara, Comments and Topics on Smarandache Notions and Problems, Erhus University Press, 1996, 50 pages. [Cached copy] See page 45.
-
seq(numtheory:-order(n^3, (n+1)^3), n=1..300); # Robert Israel, Jun 28 2017
-
a(n) = my(k=1); while(Mod(n^3, (n+1)^3)^k!=1, k++); k \\ Felix Fröhlich, Jun 28 2017
A086782
Sum of the degrees of the irreducible representations of the group GL(3,Z_n).
Original entry on oeis.org
1, 28, 468, 1876, 12400, 13104, 100548
Offset: 1
Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 03 2003
Comments