cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A053211 Cototients of consecutive pure powers of primes.

Original entry on oeis.org

2, 4, 3, 8, 5, 9, 16, 7, 32, 27, 11, 25, 64, 13, 81, 128, 17, 49, 19, 256, 23, 125, 243, 29, 31, 512, 121, 37, 41, 43, 1024, 729, 169, 47, 343, 53, 625, 59, 61, 2048, 67, 289, 71, 73, 79, 2187, 361, 83, 89, 4096, 97, 101, 103, 107, 109, 529, 113, 1331, 3125, 127
Offset: 1

Views

Author

Labos Elemer, Mar 03 2000

Keywords

Comments

Cototients of prime powers do not remain always prime powers, but are primes if their exponent is 2.

Examples

			The 10th pure power of prime (but not a prime) is 81, so a(10) = 81 - EulerPhi(81) = 81 - 54 = 27. For n=p^2, a(n)=p.
		

Crossrefs

Programs

  • Mathematica
    Map[# - EulerPhi@ # &, Select[Range[16200], And[! PrimeQ@ #, PrimePowerQ@ #] &]] (* Michael De Vlieger, Jun 11 2018 *)
    With[{nn = 2^14}, Map[Times @@ Map[#1^(#2 - 1) & @@ FactorInteger[#][[1]]] &, Select[Union@ Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}], PrimePowerQ] ] ] (* Michael De Vlieger, Mar 11 2023 *)

Formula

a(n) = A051953(A025475(n+1)) = cototient(p^k) = p^(k-1).

A057789 a(n) = Sum_{k = 1..n, gcd(k,n)=1} k*(n-k).

Original entry on oeis.org

0, 1, 4, 6, 20, 10, 56, 44, 84, 60, 220, 92, 364, 182, 280, 344, 816, 318, 1140, 520, 840, 770, 2024, 760, 2100, 1300, 2196, 1540, 4060, 1240, 4960, 2736, 3520, 2992, 4760, 2580, 8436, 4218, 5928, 4240, 11480, 3612, 13244, 6380, 8040, 7590, 17296, 6128
Offset: 1

Views

Author

Leroy Quet, Nov 04 2000

Keywords

Comments

Equal to convolution sum over positive integers, k, where k<=n and gcd(k,n)=1, except in first term, where the convolution sum is 1 instead of 0.

Examples

			Since 1, 3, 5 and 7 are relatively prime to 8 and are <= 8, a(8) = 1*(8-1) +3*(8-3) +5*(8-5) +7*(8-7) = 44.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local i;
      2*add(`if`(igcd(i,n)=1, i*(n-i),0),i=1..n/2)
    end proc:
    f(2):= 1:
    map(f, [$1..100]); # Robert Israel, Sep 29 2019
  • Mathematica
    a[n_] := 2 Sum[Boole[CoprimeQ[k, n]] k (n - k), {k, 1, n/2}];
    a[2] = 1;
    Array[a, 100] (* Jean-François Alcover, Aug 16 2020, after Maple *)
  • PARI
    a(n) = sum(k=1, n, if (gcd(n,k)==1, k*(n-k))); \\ Michel Marcus, Sep 29 2019

Formula

From Robert Israel, Sep 29 2019: (Start)
If n is prime, a(n) = A000292(n-1).
If n/2 is an odd prime, a(n) = A000292(n-2)/2.
If n/3 is a prime other than 3, a(n) = A000292(n-3)*2*n/(3*(n-2)). (End)
From Ridouane Oudra, Mar 21 2024: (Start)
a(n) = n*A023896(n) - A053818(n) ;
a(n) = (2/3)*(n*A023896(n) - A053819(n)/n) ;
a(n) = (n/6)*(A002618(n) - A023900(n)) ;
a(n) = (1/6)*(A053191(n) - n*A023900(n)). (End)
Sum_{k=1..n} a(k) ~ n^4 / (4*Pi^2). - Amiram Eldar, Apr 11 2024

A368197 Triangle read by rows: T(n,k) = Sum_{z=1..n} Sum_{y=1..n} Sum_{x=1..n} [GCD(f(x,y,z), n) = k], where f(x,y,z) = x^2 + y^2 - z^2.

Original entry on oeis.org

1, 4, 4, 18, 0, 9, 32, 8, 0, 24, 100, 0, 0, 0, 25, 72, 72, 36, 0, 0, 36, 294, 0, 0, 0, 0, 0, 49, 256, 64, 0, 96, 0, 0, 0, 96, 486, 0, 144, 0, 0, 0, 0, 0, 99, 400, 400, 0, 0, 100, 0, 0, 0, 0, 100, 1210, 0, 0, 0, 0, 0, 0, 0, 0, 0, 121
Offset: 1

Views

Author

Mats Granvik, Dec 16 2023

Keywords

Comments

Row n has sum n^3. The number of nonzero terms in row n appears to be A000005(n). It appears that Sum_{k=1..n} T(n,k)*A023900(k) = A063524(n). Main diagonal appears to be A062775. First column appears to be A053191.
It appears that when p > 2 in f(x,y,z,p) = x^p + y^p - z^p and T(n,k) = Sum_{z=1..n} Sum_{y=1..n} Sum_{x=1..n} [GCD(f(x,y,z,p), n) = k], then Sum_{k=1..n} T(n,k)*A023900(k) is not equal to A063524(n). - Mats Granvik, May 07 2024

Examples

			Triangle begins:
     1;
     4,   4;
    18,   0,   9;
    32,   8,   0,  24;
   100,   0,   0,   0,  25;
    72,  72,  36,   0,   0,  36;
   294,   0,   0,   0,   0,   0,  49;
   256,  64,   0,  96,   0,   0,   0,  96;
   486,   0, 144,   0,   0,   0,   0,   0,  99;
   400, 400,   0,   0, 100,   0,   0,   0,   0, 100;
  1210,   0,   0,   0,   0,   0,   0,   0,   0,   0, 121;
  ...
		

Crossrefs

Programs

  • Mathematica
    nn = 11; p = 2; f = x^p + y^p - z^p; Flatten[Table[Table[Sum[Sum[Sum[If[GCD[f, n] == k, 1, 0], {x, 1, n}], {y, 1, n}], {z, 1, n}], {k, 1, n}], {n, 1, nn}]]

Formula

T(n,k) = Sum_{z=1..n} Sum_{y=1..n} Sum_{x=1..n} [GCD(f(x,y,z), n) = k], where f(x,y,z) = x^2 + y^2 - z^2.

A085646 Sum of the entries in the character table of the group GL(2,Z_n).

Original entry on oeis.org

1, 5, 24, 52, 120, 120, 336, 496, 654, 600, 1320, 1248, 2184, 1680, 2880
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 11 2003

Keywords

Crossrefs

Formula

For an odd prime p : a(p) = p*(p^2-1).

A288572 a(n) = smallest positive integer k such that (n^3)^k == 1 mod (n+1)^3.

Original entry on oeis.org

1, 6, 16, 50, 6, 98, 64, 54, 50, 242, 48, 338, 98, 150, 256, 578, 54, 722, 400, 294, 242, 1058, 192, 1250, 338, 486, 784, 1682, 150, 1922, 1024, 726, 578, 2450, 432, 2738, 722, 1014, 1600, 3362, 294, 3698, 1936, 1350, 1058, 4418, 768, 4802, 1250, 1734, 2704, 5618, 486, 6050, 3136, 2166, 1682, 6962
Offset: 1

Views

Author

N. J. A. Sloane, Jun 28 2017

Keywords

Comments

From Robert Israel, Jun 28 2017: (Start)
Multiplicative order of n^3 mod (n+1)^3.
a(n) divides A053191(n+1).
a(n) is even for n >= 2.
If n == 3 (mod 4) then a(n) == 0 (mod 16), otherwise it appears that a(n) == 2 or 6 (mod 16).
If n == 0 or 4 (mod 6), then a(n) = 2*n^2.
(End)

Examples

			5^3 = 125, 6^3 = 216, 125^6 = 14551915228366851806640625 == 1 mod 216, so a(5) = 6.
(6^3)^98 == 1 mod 7^3, so a(6) = 98.
		

Crossrefs

Cf. A053191.

Programs

  • Maple
    seq(numtheory:-order(n^3, (n+1)^3), n=1..300); # Robert Israel, Jun 28 2017
  • PARI
    a(n) = my(k=1); while(Mod(n^3, (n+1)^3)^k!=1, k++); k \\ Felix Fröhlich, Jun 28 2017

Formula

Empirical: a(n+36) = 3*a(n+24) - 3*a(n+12) + a(n) for n >= 2. - Robert Israel, Jun 28 2017
Empirical g.f.: x*(x^36 + 2*x^35 + 2*x^33 + 2*x^32 + 6*x^31 + 16*x^30 + 50*x^29 + 6*x^28 + 98*x^27 + 64*x^26 + 54*x^25 + 47*x^24 + 236*x^23 + 48*x^22 + 332*x^21 + 92*x^20 + 132*x^19 + 208*x^18 + 428*x^17 + 36*x^16 + 428*x^15 + 208*x^14 + 132*x^13 + 95*x^12 + 338*x^11 + 48*x^10 + 242*x^9 + 50*x^8 + 54*x^7 + 64*x^6 + 98*x^5 + 6*x^4 + 50*x^3 + 16*x^2 + 6*x + 1)/(-x^36 + 3*x^24 - 3*x^12 + 1). - Colin Barker, Jun 30 2017

Extensions

Corrected and more terms from Robert Israel, Jun 28 2017

A086782 Sum of the degrees of the irreducible representations of the group GL(3,Z_n).

Original entry on oeis.org

1, 28, 468, 1876, 12400, 13104, 100548
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 03 2003

Keywords

Crossrefs

Formula

For a prime p : a(p) = phi(p^3)*(p^3 - 1) = p^2*(p-1)^2*(p^2+p+1)
Previous Showing 21-26 of 26 results.