cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A291193 Expansion of 1 + x*(1-x)/(1 + x^2*(1-x^2)/(1 + x^3*(1-x^3)/(1 + x^4*(1-x^4)/(1 + x^5*(1-x^5)/(1 + ...))))), a continued fraction.

Original entry on oeis.org

1, 1, -1, -1, 1, 2, -1, -4, 0, 6, 3, -7, -8, 6, 15, -2, -24, -9, 33, 32, -35, -68, 20, 114, 25, -164, -120, 196, 285, -160, -521, -16, 796, 423, -1021, -1166, 999, 2310, -387, -3774, -1296, 5194, 4608, -5735, -10007, 3870, 17441, 2750, -25635, -17116, 31111
Offset: 0

Views

Author

Seiichi Manyama, Aug 20 2017

Keywords

Examples

			G.f. = 1 + x - x^2 - x^3 + x^4 + 2*x^5 - x^6 - 4*x^7 + 6*x^9 + ...
		

Crossrefs

Cf. A053254 (nu(q)), A291200.

Formula

G.f.: 1/nu(q) where nu(q) is the '3rd order' mock theta function defined by Sum_{n >= 0} q^(n(n+1))/((1+q)(1+q^3)...(1+q^(2n+1))).
a(n) = (-1)^n*A291200(n). - R. J. Mathar, May 16 2024

A308745 Expansion of 1/(1 - x*(1 + x)/(1 - x^2*(1 + x^2)/(1 - x^3*(1 + x^3)/(1 - x^4*(1 + x^4)/(1 - ...))))), a continued fraction.

Original entry on oeis.org

1, 1, 2, 4, 8, 17, 36, 76, 161, 342, 726, 1542, 3276, 6960, 14788, 31422, 66767, 141872, 301464, 640584, 1361188, 2892417, 6146164, 13060136, 27751818, 58970564, 125308114, 266270558, 565805452, 1202295228, 2554789536, 5428741218, 11535678790, 24512475453
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 21 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 33; CoefficientList[Series[1/(1 + ContinuedFractionK[-x^k (1 + x^k), 1, {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

From Vaclav Kotesovec, Jun 25 2019: (Start)
a(n) ~ c * d^n, where
d = 2.124927028900893046638236231387101475346473032396641627320401...
c = 0.386397654364351443933577245182777062935616240164642598839093... (End)
From Peter Bala, Dec 18 2020: (Start)
Conjectural g.f.: 1/(2 - (1 + x)/(1 - x^2/(2 - (1 + x^3)/(1 - x^4/(2 - (1 + x^5)/(1 - x^6/(2 - ... ))))))).
More generally it appears that 1/(1 - t*x*(1 + u*x)/(1 - t*x^2*(1 + u*x^2)/(1 - t*x^3*(1 + u*x^3)/(1 - t*x^4*(1 + u*x^4)/(1 - ... ))))) = 1/(1 + u - (u + t*x)/(1 - t*x^2/(1 + u - (u + t*x^3)/(1 - t*x^4/(1 + u - (u + t*x^5)/(1 - ... )))))). (End)
Previous Showing 11-12 of 12 results.