cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A053259 Coefficients of the '5th-order' mock theta function phi_1(q).

Original entry on oeis.org

0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 3, 2, 2, 3, 3, 2, 2, 2, 3, 3, 2, 3, 4, 2, 2, 4, 4, 3, 3, 4, 4, 4, 3, 4, 5, 4, 4, 5, 5, 4, 4, 5, 6, 5, 4, 6, 7, 5, 5, 6, 7, 6, 6, 7, 7, 7, 6, 8, 9, 7, 7, 9
Offset: 0

Views

Author

Dean Hickerson, Dec 19 1999

Keywords

References

  • Srinivasa Ramanujan, Collected Papers, Chelsea, New York, 1962, pp. 354-355.
  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 19, 22, 25.

Crossrefs

Other '5th-order' mock theta functions are at A053256, A053257, A053258, A053260, A053261, A053262, A053263, A053264, A053265, A053266, A053267.

Programs

  • Mathematica
    Series[Sum[q^(n+1)^2 Product[1+q^(2k-1), {k, 1, n}], {n, 0, 9}], {q, 0, 100}]
    nmax = 100; CoefficientList[Series[Sum[x^((k+1)^2) * Product[1+x^(2*j-1), {j, 1, k}], {k, 0, Floor[Sqrt[nmax]]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 12 2019 *)

Formula

G.f.: phi_1(q) = Sum_{n>=0} q^(n+1)^2 (1+q)(1+q^3)...(1+q^(2n-1)).
a(n) is the number of partitions of n into odd parts such that each occurs at most twice, the largest part is unique and if k occurs as a part then all smaller positive odd numbers occur.
a(n) ~ exp(Pi*sqrt(n/30)) / (2*5^(1/4)*sqrt(phi*n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 12 2019

A259910 Expansion of f(-x^2, -x^3)^3 / f(-x)^2 in powers of x where f(,) is the Ramanujan general theta function.

Original entry on oeis.org

1, 2, 2, 1, 2, 3, 4, 3, 3, 4, 6, 6, 7, 8, 8, 9, 11, 12, 13, 14, 17, 19, 21, 21, 25, 27, 30, 31, 35, 39, 43, 47, 51, 55, 60, 65, 71, 77, 83, 88, 98, 105, 115, 122, 132, 142, 155, 164, 178, 191, 206, 220, 236, 252, 272, 290, 311, 332, 356, 378, 407, 434, 464
Offset: 0

Views

Author

Michael Somos, Jul 07 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Rogers-Ramanujan functions: G(q) (see A003114), H(q) (A003106).

Examples

			G.f. = 1 + 2*x + 2*x^2 + x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 3*x^7 + 3*x^8 + ...
G.f. = 1/q + 2*q^119 + 2*q^239 + q^359 + 2*q^479 + 3*q^599 + 4*q^719 + ...
		

References

  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 23, 6th equation.

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{ -2, 1, 1, -2, 1}[[
    Mod[k, 5, 1]]], {k, n}], {x, 0, n}];
    nmax = 100; CoefficientList[Series[Product[(1-x^k)/((1 - x^(5*k-1))*(1 - x^(5*k-4)))^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 17 2016 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^[ 1, -2, 1, 1, -2][k%5+1]), n))};

Formula

Expansion of f(-x) * (f(-x^5) / f(-x, -x^4))^3 in powers of x where f(,) is the Ramanujan general theta function.
Expansion of f(-x^2, -x^3) * G(x)^2 in powers of x where f(,) is the Ramanujan general theta function and G() is a Rogers-Ramanujan function. - Michael Somos, Jul 09 2015
Euler transform of period 5 sequence [ 2, -1, -1, 2, -1, ...].
G.f.: (Sum_{k in Z} (-1)^k * x^(k*(5*k + 1)/2)) / (Product_{k in Z} 1 - x^abs(5*k + 1))^2.
a(n) = 3 * A053266(n) - A053262(n) unless n=0.
a(n) ~ sqrt(5+2*sqrt(5)) * exp(sqrt(2*n/15)*Pi)/ (5*sqrt(2*n)). - Vaclav Kotesovec, Dec 17 2016

A260971 Expansion of phi_0(-q) in powers of q where phi_0() is a 5th-order mock theta function.

Original entry on oeis.org

1, -1, 1, 0, 1, -1, 0, -1, 1, -1, 1, 0, 1, -1, 1, -1, 1, -2, 1, -1, 1, -1, 1, -1, 2, -2, 2, -1, 2, -2, 1, -2, 2, -2, 2, -2, 2, -3, 2, -2, 3, -3, 3, -2, 3, -3, 3, -3, 3, -4, 4, -3, 4, -4, 3, -4, 4, -5, 4, -4, 5, -5, 5, -5, 6, -6, 5, -5, 6, -6, 6, -6, 7, -7, 7
Offset: 0

Views

Author

Michael Somos, Aug 06 2015

Keywords

Examples

			G.f. = 1 - x + x^2 + x^4 - x^5 - x^7 + x^8 - x^9 + x^10 + x^12 - x^13 + ...
G.f. = q^-1 - q^119 + q^239 + q^479 - q^599 - q^839 + q^959 - q^1079 + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_]:= SeriesCoefficient[Sum[(-x)^( k^2)*Product[1 - x^(2*j - 1), {j, 1, k}], {k, 0, Sqrt[n]}], {x, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Aug 01 2018 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=0, sqrtint(n), (-x)^k^2 * prod(i=1, k, 1 - x^(2*i - 1), 1 + x * O(x^(n - k^2)))), n))};

Formula

G.f.: Sum_{k >= 0} (-x)^n^2 * (1 - x) * (1 - x^3) * ... * (1 - x^(2*k-1)).
a(n) = (-1)^n * A053258(n) = 2 * A053264(n) - A053262(n).
a(n) ~ (-1)^n * sqrt(phi) * exp(Pi*sqrt(n/30)) / (2*5^(1/4)*sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 15 2019

A279135 Coefficients of the '5th-order' mock theta function Phi(q) with a(0)=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 8, 8, 9, 10, 12, 12, 14, 15, 17, 18, 20, 21, 25, 26, 29, 31, 35, 36, 41, 43, 48, 51, 56, 59, 66, 70, 76, 81, 89, 94, 103, 109, 119, 126, 137, 144, 158, 167, 180, 191, 207, 218, 236, 250, 269, 285, 306, 323
Offset: 0

Views

Author

Michael Somos, Dec 06 2016

Keywords

Comments

In Ramanujan's lost notebook the generating function is denoted by phi(q) on pages 18 and 20, however on page 20 there is a minus one first term.

Examples

			G.f. = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 2*x^6 + 2*x^7 + 2*x^8 + 3*x^9 + ...
		

References

  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 18, 20, 23

Crossrefs

Cf. A053262. Essentially the same as A053266.
Cf. A259910.

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^(5 k^2) / (QPochhammer[ x, x^5, k + 1] QPochhammer[ x^4, x^5, k]) // FunctionExpand, {k, 0, Sqrt[n/5]}], {x, 0, n}]];
    a[ n_] := If[ n < 0, 0, With[ {m = Sqrt[1 + 24 n/5]}, SeriesCoefficient[ Sum[ (-1)^k x^(5 k (3 k + 1)/2) / (1 - x^(5 k + 1)), {k, Quotient[m + 1, -6], Quotient[m - 1, 6]}] / QPochhammer[ x^5], {x, 0, n}]]];
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=0, sqrtint(n\5), x^(5*k^2) / prod(i=1, 5*k+1, 1 - if( i%5==1 || i%5==4, x^i), 1 + x * O(x^(n - 5*k^2)))), n))};
    
  • PARI
    {a(n) = my(A, m); if( n<0, 0, m = sqrtint(1 + 24*n\5); A = x * O(x^n); polcoeff( sum(k=(m + 1)\-6, (m - 1)\6, (-1)^k * x^(5*k*(3*k + 1)/2) / (1 - x^(5*k + 1)), A) / eta(x^5 + A), n))};

Formula

G.f.: Sum_{k>=0} x^(5*k^2) / ((1 - x) * (1 - x^4) * (1 - x^6) * (1 - x^9)...(1 - x^(5*k+1))).
3*a(n) = A053262(n) + A259910(n) unless n=0. [Ramanujan, p. 23, equation 6]
a(n) ~ sqrt(phi/2) * exp(Pi*sqrt(2*n/15)) / (5^(3/4) * sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 12 2019
Previous Showing 11-14 of 14 results.