cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-53 of 53 results.

A181964 Sum of the sizes of normalizers of all the cyclic subgroups of Alternating Group of order n.

Original entry on oeis.org

1, 1, 6, 36, 240, 2160, 20160, 241920, 2903040, 39916800, 578793600, 9580032000, 161902540800, 3007651046400, 58845346560000, 1234444603392000, 26854400821248000, 624231436308480000, 15083992450695168000, 385614968295997440000
Offset: 1

Views

Author

Olivier Gérard, Apr 04 2012

Keywords

Comments

For each cyclic subgroup of the Alternate group on n symbols, add the size of its normalizer (permutations leaving the subgroup invariant by conjugation).
a(7) is remarquable because it is equal to the size of Alt(8).

Examples

			Decomposing by number of cyclic subgroups * size of normalizer of subgroups
a(5) = 1*60 + 4*15 + 6*10 + 0*60 + 10*6 = 240.
a(6) = 1*360 + 8*45 + (18*20+18*20) + 8*45 + 10*36 = 2160.
		

Crossrefs

Formula

a(n) = n!/2 * A046682(n).

A244524 Number of pairs (f,g) of commuting maps {0,..,n-1}->{0,..,n-1} with 0 <= f(k), g(k) <= k.

Original entry on oeis.org

1, 1, 4, 26, 236, 2780, 40642, 715836, 14873174, 358866952, 9934283924, 312461402424
Offset: 0

Views

Author

Joerg Arndt, Jul 25 2014

Keywords

Examples

			The a(3) = 26 pairs of such maps are (dots for zeros in the maps):
01:  [ . . . ]  [ . . . ]
02:  [ . . . ]  [ . . 1 ]
03:  [ . . . ]  [ . . 2 ]
04:  [ . . . ]  [ . 1 . ]
05:  [ . . . ]  [ . 1 1 ]
06:  [ . . . ]  [ . 1 2 ]
07:  [ . . 1 ]  [ . . . ]
08:  [ . . 1 ]  [ . . 1 ]
09:  [ . . 1 ]  [ . 1 2 ]
10:  [ . . 2 ]  [ . . . ]
11:  [ . . 2 ]  [ . . 2 ]
12:  [ . . 2 ]  [ . 1 . ]
13:  [ . . 2 ]  [ . 1 2 ]
14:  [ . 1 . ]  [ . . . ]
15:  [ . 1 . ]  [ . . 2 ]
16:  [ . 1 . ]  [ . 1 . ]
17:  [ . 1 . ]  [ . 1 2 ]
18:  [ . 1 1 ]  [ . . . ]
19:  [ . 1 1 ]  [ . 1 1 ]
20:  [ . 1 1 ]  [ . 1 2 ]
21:  [ . 1 2 ]  [ . . . ]
22:  [ . 1 2 ]  [ . . 1 ]
23:  [ . 1 2 ]  [ . . 2 ]
24:  [ . 1 2 ]  [ . 1 . ]
25:  [ . 1 2 ]  [ . 1 1 ]
26:  [ . 1 2 ]  [ . 1 2 ]
		

Crossrefs

Cf. A181162 (commuting maps {1,..,n}->{1,..,n} without restrictions).
Cf. A053529 (commuting permutations).

Programs

  • Maple
    s:= proc(n) option remember; `if`(n=0, [[]],
           map(x-> seq([x[], i], i=1..n), s(n-1)))
        end:
    a:= n-> (l-> add(add(`if`([seq(evalb(f[g[i]]=g[f[i]])
        , i=1..n)]=[true$n], 1, 0), g=l), f=l))(s(n)):
    seq(a(n), n=0..6);  # Alois P. Heinz, Jul 30 2014

Extensions

All terms corrected (error pointed out by Alois P. Heinz), Joerg Arndt, Jul 30 2014
a(10)-a(11) from Alois P. Heinz, Jul 30 2014

A350225 Number of ordered pairs (a,g) with a in IS_n the symmetric inverse semigroup on [n] and g in symmetric group on [n] such that ag=ga.

Original entry on oeis.org

1, 2, 10, 60, 480, 4320, 46800, 554400, 7459200, 108864000, 1745452800, 30017433600, 558036864000, 11021826816000, 232330146048000, 5173159799808000, 121812482727936000, 3012672515973120000, 78301030421053440000, 2127572806150471680000, 60438151687124090880000
Offset: 0

Views

Author

Geoffrey Critzer, Dec 20 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, 2*(n-1)!*
          add(a(j)/j!*numtheory[sigma](n-j), j=0..n-1))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Dec 20 2021
  • Mathematica
    nn = 16; Table[Sum[PartitionsP[k] PartitionsP[n - k], {k, 0, n}], {n, 0, nn}] Table[n!, {n, 0, nn}]

Formula

a(n) = A000712(n)*n!
Previous Showing 51-53 of 53 results.