A082506 a(n) = gcd(2^n, n - phi(n)); largest power of 2 dividing cototient(n) = A051953(n).
2, 1, 1, 2, 1, 4, 1, 4, 1, 2, 1, 8, 1, 8, 1, 8, 1, 4, 1, 4, 1, 4, 1, 16, 1, 2, 1, 16, 1, 2, 1, 16, 1, 2, 1, 8, 1, 4, 1, 8, 1, 2, 1, 8, 1, 8, 1, 32, 1, 2, 1, 4, 1, 4, 1, 32, 1, 2, 1, 4, 1, 32, 1, 32, 1, 2, 1, 4, 1, 2, 1, 16, 1, 2, 1, 8, 1, 2, 1, 16, 1, 2, 1, 4, 1, 4, 1, 16, 1, 2, 1, 16, 1, 16, 1, 64, 1, 8, 1
Offset: 1
Keywords
Examples
Different from A069177, analogous sequence with totient, instead of cototient.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= n -> padic:-ordp(n - numtheory:-phi(n), 2): map(f, [$1..100]); # Robert Israel, May 31 2018
Comments