cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A322256 Numbers k such that t(k) = t(k+1) where t(k) = tau(k) + sigma(k) = A007503(k) is the number of subgroups of the dihedral group of order 2k.

Original entry on oeis.org

14, 1334, 1634, 2685, 33998, 42818, 64665, 84134, 109214, 122073, 166934, 289454, 383594, 440013, 544334, 605985, 649154, 655005, 792855, 845126, 1642154, 2284814, 2305557, 2913105, 3571905, 3682622, 4701537, 5181045, 6431732, 6444873, 6771405, 10074477
Offset: 1

Views

Author

Amiram Eldar, Dec 01 2018

Keywords

Comments

Jensen and Keane asked if this sequence is infinite. Jensen and Bussian suggested the calculation of this sequence as a part of a student research project.
Supersequence of A054004. Terms that are not in it are 845126, 14392646, 10461888478, ...

Crossrefs

Programs

  • Magma
    [n: n in [1..2*10^6] | (NumberOfDivisors(n) + SumOfDivisors(n)) eq (NumberOfDivisors(n+1) + SumOfDivisors(n+1))]; // Vincenzo Librandi, Dec 08 2018
  • Mathematica
    t[n_] := DivisorSigma[0, n] + DivisorSigma[1, n]; tQ[n_] := t[n] == t[n + 1]; Select[Range[1000000], tQ]
  • PARI
    isok(n) = (numdiv(n)+sigma(n)) == (numdiv(n+1)+sigma(n+1)); \\ Michel Marcus, Dec 04 2018
    

A350800 Numbers k such that k and k+1 have the same number and sum of divisors but a different number of distinct prime factors.

Original entry on oeis.org

64665, 109214, 2305557, 4701537, 6444873, 10118654, 32225337, 33876117, 70282053, 105967784, 149205914, 187434621, 268890218, 279113505, 334925577, 357340922, 391392134, 424942604, 575712494, 610752933, 612863198, 641703842, 701792234, 743194142, 800679495
Offset: 1

Views

Author

Kevin P. Thompson, Jan 16 2022

Keywords

Comments

Subsequence of A054004. Most members of A054004 are not a part of this subsequence, so consecutive numbers with equal tau and sigma most often achieve this with an equal count of distinct prime factors.

Examples

			64665 is a term of this sequence since tau(64665) = tau(64666) = 8 and sigma(64665) = sigma(64666) = 2160, but omega(64665) = 4 and omega(64666) = 3.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^7], DivisorSigma[{0, 1}, #] ==  DivisorSigma[{0, 1}, # + 1] && PrimeNu[#] != PrimeNu[# + 1] &] (* Amiram Eldar, Jan 20 2022 *)

A353033 Numbers m such that tau(m) = 2 * tau(m - 1) and simultaneously sigma(m) = 2 * sigma(m - 1), where tau(k) = A000005(k) and sigma(k) = A000203(k).

Original entry on oeis.org

6, 47796, 111684, 123498, 224562, 228378, 384858, 773016, 1096824, 1174542, 2351240, 2529414, 3320472, 3332616, 3650376, 4605096, 4838838, 4978476, 5014842, 5788662, 6023928, 6302724, 7658024, 8298978, 9287240, 9967974, 10950024, 12677496, 14036694, 14120360, 14927990
Offset: 1

Views

Author

Jaroslav Krizek, Apr 18 2022

Keywords

Comments

Corresponding values of tau(m): 4, 24, 24, 16, 16, 16, 16, 32, 32, 16, 32, 32, 32, ...
Corresponding values of sigma(m): 12, 127680, 268128, 274560, 483840, 483840, 855360, 1996800, 2862720, 2472960, ...

Examples

			tau(6) = 4 = 2 * tau(5) = 2 * 2, sigma(6) = 12 = 2 * sigma(5) = 2 * 6.
		

Crossrefs

Cf. A000005 (tau), A000203 (sigma), A054004, A347603, A353034.

Programs

  • Magma
    [m: m in [2..10^6] | #Divisors(m) eq 2 * #Divisors(m - 1) and &+Divisors(m) eq 2 * &+Divisors(m - 1)]

A353034 Numbers m such that tau(m) = 2 * tau(m + 1) and simultaneously sigma(m) = 2 * sigma(m + 1), where tau(k) = A000005(k) and sigma(k) = A000203(k).

Original entry on oeis.org

20118, 20712, 79338, 103410, 203898, 267630, 570342, 907710, 1093026, 1228062, 1263918, 1663752, 2322760, 3268782, 3468486, 3527250, 5483418, 6277038, 6500442, 7637980, 9181578, 9297078, 17708178, 18638646, 25274946, 25364526, 25768302, 25909254, 31118664
Offset: 1

Views

Author

Jaroslav Krizek, Apr 18 2022

Keywords

Comments

Corresponding values of tau(m): 16, 16, 16, 32, 16, 32, 16, 32, 16, 32, 16, 32, 32, ...
Corresponding values of sigma(m): 46080, 51840, 181440, 276480, 432000, 701568, 1200960, 2211840, ...

Examples

			tau(20118) = 16 = 2 * tau(20119) = 2 * 8, sigma(20118) = 46080 = 2 * sigma(20119) = 2 * 23040.
		

Crossrefs

Cf. A000005 (tau), A000203 (sigma), A054004, A347603, A353033.
Subsequence of A163193.

Programs

  • Magma
    [m: m in [2..10^6] | #Divisors(m) eq 2 * #Divisors(m + 1) and &+Divisors(m) eq 2 * &+Divisors(m + 1)]
Previous Showing 11-14 of 14 results.