cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-44 of 44 results.

A174520 Sum of all composite numbers in-between prime numbers p(n) and p(n+2).

Original entry on oeis.org

4, 10, 33, 39, 57, 63, 81, 193, 160, 200, 287, 159, 177, 385, 530, 340, 380, 527, 279, 452, 623, 673, 1081, 948, 399, 417, 423, 441, 1893, 1947, 1057, 808, 1434, 1446, 920, 1570, 1295, 1345, 1730, 1060, 1854, 1866, 777, 783, 2453, 4642, 3062, 903, 921, 1873
Offset: 1

Views

Author

Keywords

Comments

2_3_4_5 -> 4, 3_4_5_6_7 -> 4+6=10, 5_6_7_8_9_10_11 -> 6+8+9+10=33, ..

Crossrefs

Programs

  • Mathematica
    f[n_,x_]:=n*x+x*(x+1)/2;Table[f[Prime[n],Prime[n+2]-Prime[n]-1]-Prime[n+1],{n,5!}]

A174521 Primes that are the sum of all composite numbers in-between prime numbers p(n) and p(n+2).

Original entry on oeis.org

193, 673, 1873, 2207, 2833, 4391, 3023, 8209, 5903, 8999, 6047, 9643, 7537, 19843, 10273, 29399, 11953, 12433, 20879, 35999, 36241, 23761, 23831, 24907, 20353, 32401, 33403, 22367, 34129, 57367, 49123, 74311, 51197, 40037, 42773, 71399
Offset: 1

Views

Author

Keywords

Comments

20+21+22+24+25+26+27+28=193,..

Crossrefs

Programs

  • Mathematica
    f[n_,x_]:=n*x+x*(x+1)/2;Select[Table[f[Prime[n],Prime[n+2]-Prime[n]-1]-Prime[n+1],{n,6!}],PrimeQ[ # ]&]
    Select[Table[Total[Select[Range[Prime[n],Prime[n+2]],CompositeQ]],{n,1000}],PrimeQ] (* Harvey P. Dale, May 13 2017 *)

A194264 Sum of divisors of all elements of the n-th set of consecutive integers that are also nonprimes.

Original entry on oeis.org

1, 7, 12, 46, 28, 79, 39, 110, 229, 72, 304, 206, 96, 234, 444, 482, 168, 555, 366, 195, 642, 433, 764, 1158, 544, 216, 564, 280, 616, 2639, 683, 1210, 288, 2211, 372, 1406, 1389, 834, 1555, 1490, 546, 2788, 508, 1029, 468, 3913, 3948, 1249, 560, 1266, 2006
Offset: 1

Views

Author

Omar E. Pol, Sep 03 2011

Keywords

Examples

			46 is in the sequence because the fourth set of consecutive natural numbers that are also nonprimes is {8, 9, 10}, the sum of divisors of 8 is 1+2+4+8=15, the sum of divisors of 9 is 1+3+9=13, the sum of divisors of 10 is 1+2+5+10=18, so a(4) = 15+13+18 = 46.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> `if`(n=1, 1, add(sigma(i), i=ithprime(n)+1..ithprime(n+1)-1)):
    seq(a(n), n=1..80);  # Alois P. Heinz, Oct 18 2011
  • Mathematica
    Table[Plus@@Flatten[Divisors[Range[Prime[n] - (-1)^Prime[n], Prime[n + 1] + (-1)^Prime[n + 1]]]], {n, 2, 50}] (* Alonso del Arte, Oct 18 2011 *)

A373828 Run-sums (differing by 0) of run-lengths (differing by 2) of odd primes.

Original entry on oeis.org

3, 4, 1, 2, 1, 2, 2, 2, 1, 2, 4, 4, 3, 4, 4, 6, 2, 2, 1, 2, 3, 2, 1, 2, 2, 2, 3, 2, 10, 4, 4, 2, 7, 2, 4, 2, 3, 2, 2, 2, 1, 2, 2, 2, 18, 6, 2, 2, 2, 2, 17, 4, 1, 4, 2, 2, 6, 2, 9, 2, 3, 2, 1, 2, 1, 2, 1, 2, 8, 2, 3, 2, 2, 4, 15, 2, 1, 2, 4, 2, 1, 2, 1, 2, 7, 2
Offset: 1

Views

Author

Gus Wiseman, Jun 23 2024

Keywords

Comments

Run-sums of A251092.

Examples

			The odd primes are:
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, ...
with runs:
{3,5,7}, {11,13}, {17,19}, {23}, {29,31}, {37}, {41,43}, {47}, {53}, ...
with lengths:
3, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, ...
with runs:
{3}, {2,2}, {1}, {2}, {1}, {2}, {1,1}, {2}, {1}, {2}, {1,1,1,1}, {2,2}, ...
with sums a(n).
		

Crossrefs

Run-sums of A251092.
The run-lengths (instead of run-sums) are A373819, firsts A373825, A373824.
A000040 lists the primes.
A001223 gives first differences of primes.
A027833 gives antirun-lengths of primes > 3 (prepended run-lengths A373820).
A046933 counts composite numbers between primes.
A071148 gives partial sums of odd primes.
A333254 gives run-lengths of first differences of primes.
A373821 gives run-lengths of run-lengths of first differences of odd primes.

Programs

  • Mathematica
    Total/@Split[Length /@ Split[Select[Range[3,10000],PrimeQ], #1+2==#2&]//Most]//Most
Previous Showing 41-44 of 44 results.