A174520
Sum of all composite numbers in-between prime numbers p(n) and p(n+2).
Original entry on oeis.org
4, 10, 33, 39, 57, 63, 81, 193, 160, 200, 287, 159, 177, 385, 530, 340, 380, 527, 279, 452, 623, 673, 1081, 948, 399, 417, 423, 441, 1893, 1947, 1057, 808, 1434, 1446, 920, 1570, 1295, 1345, 1730, 1060, 1854, 1866, 777, 783, 2453, 4642, 3062, 903, 921, 1873
Offset: 1
-
f[n_,x_]:=n*x+x*(x+1)/2;Table[f[Prime[n],Prime[n+2]-Prime[n]-1]-Prime[n+1],{n,5!}]
A174521
Primes that are the sum of all composite numbers in-between prime numbers p(n) and p(n+2).
Original entry on oeis.org
193, 673, 1873, 2207, 2833, 4391, 3023, 8209, 5903, 8999, 6047, 9643, 7537, 19843, 10273, 29399, 11953, 12433, 20879, 35999, 36241, 23761, 23831, 24907, 20353, 32401, 33403, 22367, 34129, 57367, 49123, 74311, 51197, 40037, 42773, 71399
Offset: 1
-
f[n_,x_]:=n*x+x*(x+1)/2;Select[Table[f[Prime[n],Prime[n+2]-Prime[n]-1]-Prime[n+1],{n,6!}],PrimeQ[ # ]&]
Select[Table[Total[Select[Range[Prime[n],Prime[n+2]],CompositeQ]],{n,1000}],PrimeQ] (* Harvey P. Dale, May 13 2017 *)
A194264
Sum of divisors of all elements of the n-th set of consecutive integers that are also nonprimes.
Original entry on oeis.org
1, 7, 12, 46, 28, 79, 39, 110, 229, 72, 304, 206, 96, 234, 444, 482, 168, 555, 366, 195, 642, 433, 764, 1158, 544, 216, 564, 280, 616, 2639, 683, 1210, 288, 2211, 372, 1406, 1389, 834, 1555, 1490, 546, 2788, 508, 1029, 468, 3913, 3948, 1249, 560, 1266, 2006
Offset: 1
46 is in the sequence because the fourth set of consecutive natural numbers that are also nonprimes is {8, 9, 10}, the sum of divisors of 8 is 1+2+4+8=15, the sum of divisors of 9 is 1+3+9=13, the sum of divisors of 10 is 1+2+5+10=18, so a(4) = 15+13+18 = 46.
-
with(numtheory):
a:= n-> `if`(n=1, 1, add(sigma(i), i=ithprime(n)+1..ithprime(n+1)-1)):
seq(a(n), n=1..80); # Alois P. Heinz, Oct 18 2011
-
Table[Plus@@Flatten[Divisors[Range[Prime[n] - (-1)^Prime[n], Prime[n + 1] + (-1)^Prime[n + 1]]]], {n, 2, 50}] (* Alonso del Arte, Oct 18 2011 *)
A373828
Run-sums (differing by 0) of run-lengths (differing by 2) of odd primes.
Original entry on oeis.org
3, 4, 1, 2, 1, 2, 2, 2, 1, 2, 4, 4, 3, 4, 4, 6, 2, 2, 1, 2, 3, 2, 1, 2, 2, 2, 3, 2, 10, 4, 4, 2, 7, 2, 4, 2, 3, 2, 2, 2, 1, 2, 2, 2, 18, 6, 2, 2, 2, 2, 17, 4, 1, 4, 2, 2, 6, 2, 9, 2, 3, 2, 1, 2, 1, 2, 1, 2, 8, 2, 3, 2, 2, 4, 15, 2, 1, 2, 4, 2, 1, 2, 1, 2, 7, 2
Offset: 1
The odd primes are:
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, ...
with runs:
{3,5,7}, {11,13}, {17,19}, {23}, {29,31}, {37}, {41,43}, {47}, {53}, ...
with lengths:
3, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, ...
with runs:
{3}, {2,2}, {1}, {2}, {1}, {2}, {1,1}, {2}, {1}, {2}, {1,1,1,1}, {2,2}, ...
with sums a(n).
A001223 gives first differences of primes.
A027833 gives antirun-lengths of primes > 3 (prepended run-lengths
A373820).
A046933 counts composite numbers between primes.
A071148 gives partial sums of odd primes.
A333254 gives run-lengths of first differences of primes.
A373821 gives run-lengths of run-lengths of first differences of odd primes.
Comments