A283427 a(n) is the number of consecutive smallest prime totatives of primorial A002110(n).
0, 1, 7, 26, 34, 55, 65, 91, 137, 152, 208, 251, 270, 315, 394, 471, 502, 591, 656, 685, 790, 864, 977, 1139, 1227, 1268, 1354, 1395, 1494, 1847, 1945, 2109, 2157, 2455, 2512, 2693, 2878, 3005, 3202, 3396, 3471, 3826, 3902, 4045, 4119, 4581, 5059, 5226, 5307
Offset: 1
Examples
a(2) = pi(min(prime(3)^2, p_2#)) - 2 = pi(min(25,6)) - 2 = 3 - 2 = 1. a(4) = pi(min(prime(5)^2, p_4#)) - 4 = pi(min(121,210)) - 4 = 30 - 4 = 26.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[PrimePi[Min[Prime[n + 1]^2, Product[Prime@ i, {i, n}]]] - n, {n, 49}] (* Michael De Vlieger, May 16 2017 *)
Formula
a(n) = pi(min(prime(n+1)^2, Product_{k=1..n} ( prime(k) ) )) - n.
Comments