cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A014246 a(n) = (n-th term of Beatty sequence for e) - (n-th term of Beatty sequence for e/(e-1)).

Original entry on oeis.org

1, 2, 4, 4, 6, 7, 8, 9, 10, 12, 12, 14, 15, 16, 17, 18, 20, 20, 21, 23, 24, 25, 26, 28, 28, 29, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 45, 45, 47, 48, 48, 50, 51, 53, 53, 55, 56, 56, 58, 59, 61, 61, 62, 64, 64, 66, 67, 69, 69, 70, 72, 72, 74, 75, 77, 77, 78, 80, 80, 82
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    E:=Exp(1); [Floor(n*E) - Floor(n*E/(E-1)): n in [1..75]]; // G. C. Greubel, Jun 19 2019
    
  • Mathematica
    Table[Floor[n*E] - Floor[n*E/(E-1)], {n,1,75}] (* G. C. Greubel, Jun 19 2019 *)
  • PARI
    my(e=exp(1)); vector(75, n, (n*e)\1 - (n*e)\(e-1)) \\ G. C. Greubel, Jun 19 2019
    
  • Sage
    [floor(n*e) - floor(n*e/(e-1)) for n in (1..75)] # G. C. Greubel, Jun 19 2019

Formula

a(n) = floor(e * n) - floor(e/(e-1) * n). - Franklin T. Adams-Watters, Nov 02 2006

Extensions

Corrected and extended by Franklin T. Adams-Watters, Nov 02 2006

A279632 Coefficients in the expansion of ([s] + [2s]x + [3s]x^2 + ...)/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = e - 1, s = r/(1-r).

Original entry on oeis.org

2, -2, 3, -2, -2, 8, -14, 17, -12, -5, 34, -68, 91, -80, 11, 126, -308, 467, -488, 235, 382, -1316, 2291, -2760, 1995, 638, -5220, 10738, -14725, 13447, -3007, -18467, 47914, -74806, 80821, -43890, -51936, 201548, -363193, 450980, -347117, -55972, 782359
Offset: 0

Views

Author

Clark Kimberling, Dec 18 2016

Keywords

Crossrefs

Programs

  • Mathematica
    z = 100;
    r = E - 1; f[x_] := f[x] = Sum[Floor[r*(k + 1)] x^k, {k, 0, z}];
    s = r/(r - 1); g[x_] := g[x] = Sum[Floor[s*(k + 1)] x^k, {k, 0, z}]
    CoefficientList[Series[g[x]/f[x], {x, 0, z}], x]

Formula

G.f.: ([s] + [2s]x + [3s]x^2 + ...)/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = sqrt(2), s = r/(1-r).

A022806 a(n) = B(n) + c(n) where B(n) is Beatty sequence [ n*e ] and c is the complement of B.

Original entry on oeis.org

3, 8, 12, 16, 20, 25, 30, 33, 38, 42, 46, 50, 55, 60, 63, 68, 72, 76, 81, 85, 90, 93, 98, 102, 106, 111, 115, 120, 123, 128, 133, 136, 141, 145, 150, 153, 158, 163, 167, 171, 175, 180, 184, 188, 193, 197, 201, 205, 210, 214, 218, 223, 227, 231, 236
Offset: 1

Views

Author

Keywords

Formula

a(n) = A022843(n + 1) + A054385(n). - Sean A. Irvine, May 21 2019

A054645 Triangle T(n,k) of asymmetric n X n binary matrices with k=0..n^2 ones under action of dihedral group of the square D_4.

Original entry on oeis.org

0, 0, 2, 6, 10, 10, 6, 2, 0, 0, 0, 1, 10, 63, 207, 525, 954, 1395, 1550, 1395, 954, 525, 207, 63, 10, 1, 0, 0, 1, 28, 258, 1503, 6475, 21810, 59540, 134333, 254178, 407040, 555356, 648054, 648054, 555356, 407040, 254178, 134333, 59540, 21810, 6475
Offset: 3

Views

Author

Vladeta Jovovic, May 15 2000

Keywords

Comments

Row sums give A054385.

Examples

			The batch [0,0,2,6,10,10,6,2,0,0] gives the numbers of asymmetric 3 X 3 binary matrices with k=0..9 ones under action of dihedral group of the square D_4.
There are 6 nonequivalent asymmetric 3 X 3 binary matrices with 3 ones under action of D_4:
[0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 1]
[0 0 1] [0 0 1] [0 1 0] [0 1 1] [1 0 1] [0 0 0]
[1 0 1] [1 1 0] [0 1 1] [1 0 0] [0 0 1] [1 1 0].
		

Crossrefs

Cf. A054252.
Previous Showing 11-14 of 14 results.