cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A231293 Numbers m such that, in the prime factorization of m, the product of the prime factors equals the sum of prime factors and exponents.

Original entry on oeis.org

20, 50, 112, 392, 1372, 2816, 3645, 4802, 6075, 10125, 13312, 15488, 16875, 28125, 46875, 85184, 86528, 278528, 413343, 468512, 562432, 964467, 1245184, 2250423, 2367488, 2576816, 3655808, 3932160, 5250987, 5898240, 8847360, 9830400, 11829248, 12252303
Offset: 1

Views

Author

Alex Ratushnyak, Nov 06 2013

Keywords

Comments

If m = p_1^c_1 * p_2^c_2 * p_3^c_3 * ... * p_k^c_k, where c's are positive integers and p's are distinct primes, then product{j=1 to k}[p_j] = sum{j=1 to k}[p_j+c_j].

Examples

			50 = 2 * 5^2; the product of the prime factors is 2 * 5 = 10, the sum of the prime factors and exponents is 2 + 1 + 5 + 2 = 10, hence 50 is in the sequence.
112 = 2^4 * 7; the product of the prime factors is 2 * 7 = 14, the sum of the prime factors and exponents is 2 + 4 + 7 + 1 = 14, hence 112 is in the sequence.
14172488 = 2^3 * 11^6, product of prime factors is 2*11 = 22, sum of prime factors and exponents is 2 + 3 + 11 + 6 = 22, hence 14172488 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    t = {}; n = 1; While[Length[t] < 30, n++; f = FactorInteger[n]; sm = Total[Flatten[f]]; pr = Times @@ Transpose[f][[1]]; If[sm == pr, AppendTo[t, n]]]; t
    ppfQ[n_]:=Module[{f=FactorInteger[n]},Times@@[f][[All,1]] == Total[ Flatten[f]]]; Select[Range[13*10^6],ppfQ] (* Harvey P. Dale, Aug 17 2016 *)

A276372 Numbers n such that, in the prime factorization of n, the list of the exponents is a rotation of the list of the prime factors.

Original entry on oeis.org

1, 4, 27, 72, 108, 800, 3125, 6272, 12500, 30375, 36000, 48600, 84375, 247808, 337500, 395136, 750141, 823543, 857304, 1384448, 3294172, 22235661, 24532992, 37879808, 53782400, 88942644, 122500000, 161980416, 171478296, 189267968, 235782657, 600112800, 1313046875, 2155524696
Offset: 1

Views

Author

Robert C. Lyons, Aug 31 2016

Keywords

Examples

			4 is in the sequence because the prime factorization of 4 is 2^2, and the list of exponents (i.e., [2]) is a rotation of the list of prime factors (i.e., [2]).
36000 is in the sequence because the prime factorization of 36000 is 2^5 * 3^2 * 5^3, and the list of exponents (i.e., [5, 2, 3]) is a rotation of the list of prime factors (i.e., [2, 3, 5]).
84 is not in the sequence because the prime factorization of 84 is 2^2 * 3^1 * 7^1, and the list of exponents (i.e., [2, 1, 1]) is not a rotation of the list of prime factors (i.e., [2, 3, 7]).
21600 is not in the sequence because the prime factorization of 21600 is 2^5 * 3^3 * 5^2, and the list of exponents (i.e., [5, 3, 2]) is not a rotation of the list of prime factors (i.e., [2, 3, 5]).
		

Crossrefs

Subsequence of A122406 and of A056166. A048102 is a subsequence.

Programs

  • Mathematica
    Select[Range[10^6], Function[w, Total@ Boole@ Map[First@ w == # &, RotateLeft[Last@ w, #] & /@ Range[Length@ Last@ w]] > 0]@ Transpose@ FactorInteger@ # &] (* Michael De Vlieger, Sep 01 2016 *)
  • Sage
    def in_seq( n ):
        if n == 1: return True
        pf = list( factor( n ) )
        primes    = [ t[0] for t in pf ]
        exponents = [ t[1] for t in pf ]
        if primes[0] in exponents:
            i = exponents.index(primes[0])
            exp_rotated = exponents[i : ] + exponents[0 : i]
            return primes == exp_rotated
        else:
            return False
    print([n for n in range(1, 10000000) if in_seq(n)])
    
  • Sage
    # Much faster program that generates the solutions rather than searching for them.
    from sage.misc.misc import powerset
    primes = primes_first_n(9)
    max_prime = primes[-1]
    solutions = set([1])
    max_solution = min(2^max_prime * max_prime^2, max_prime^max_prime)
    for subset in powerset(primes):
        subset_list = list(subset)
        for i in range(0, len(subset_list)):
            exponents = subset_list[i : ] + subset_list[0 : i]
            product = 1
            for j in range(0, len(subset_list)):
                product = product * subset_list[j]^exponents[j]
            if product <= max_solution:
                solutions.add(product)
    print(sorted(solutions))

A356433 Numbers k such that, in the prime factorization of k, the least common multiple of the exponents equals the least common multiple of the prime factors.

Original entry on oeis.org

1, 4, 27, 72, 108, 192, 576, 800, 1458, 1728, 2916, 3125, 5120, 5832, 6272, 12500, 21600, 25600, 30375, 36000, 46656, 48600, 77760, 84375, 114688, 116640, 121500, 138240, 169344, 225000, 247808, 337500, 384000, 388800, 395136, 583200, 600000, 653184, 691200, 750141, 802816, 823543, 857304, 979776
Offset: 1

Views

Author

Jean-Marc Rebert, Aug 07 2022

Keywords

Comments

Numbers k such that A072411(k) = A007947(k). - Michel Marcus, Aug 29 2022
Terms p^p, p prime, form the subsequence A051674. - Bernard Schott, Sep 21 2022
Terms p^q * q^p with distinct primes p and q form the subsequence A082949. - Bernard Schott, Feb 01 2023

Examples

			576 = 2^6 * 3^2, lcm(2,3) = 6 = lcm(6,2), hence 576 is a term.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], Equal @@ LCM @@ FactorInteger[#] &] (* Amiram Eldar, Aug 07 2022 *)
  • PARI
    isok(k) = my(f=factor(k)); lcm(f[,1]) == lcm(f[,2]); \\ Michel Marcus, Aug 07 2022
    
  • Python
    from math import lcm
    from sympy import factorint
    def ok(n): f = factorint(n); return lcm(*f.keys()) == lcm(*f.values())
    print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Aug 07 2022
Previous Showing 11-13 of 13 results.