cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A274521 Number of odd partitions in the multiset of intersections of the set of partitions of n with itself; also number of distinct partitions in that multiset.

Original entry on oeis.org

1, 1, 4, 8, 23, 44, 107, 190, 406, 722, 1394, 2383, 4434, 7342, 12901, 21162, 35754, 57286, 94294, 147980, 237716, 368255, 577038, 880400, 1358074, 2043017, 3097194, 4607048, 6882358, 10121400, 14937754, 21726770, 31695300, 45685964, 65909693, 94165650
Offset: 1

Views

Author

George Beck, Jun 26 2016

Keywords

Comments

Let a(n) be the number of odd partitions in the multiset intersections of the set of partitions of n with itself.
Form the p(n) X p(n) matrix M of partitions of numbers ranging from 1 to n by taking the multiset intersections of all the pairs of partitions of n. Then, ignoring the empty set, the number of odd partitions in M equals the number of distinct partitions in M. (Proved in Wilf et al., "A pentagonal number sieve".)
By numerical experimentation, it seems a(n) is the convolution of A000009 (with offset 1) and A054440. (conjectured)

Examples

			For n=3, the partitions are 3, 21, 111. The multiset intersections are M = {{3, x, x}, {x, 21, 1}, {x, 1, 111}} (where x is the empty set), which fall into classes {{OD, y, y}, {y, D, OD}, {y, OD, O}}, where O means odd, D means distinct, OD means both, and y means neither. Thus a(3) = 4, the number of Os, which equals the number of Ds.
		

Crossrefs

A304988 G.f.: Sum_{k>=0} A000041(k)^2 * x^k / Sum_{k>=0} A000009(k) * x^k.

Original entry on oeis.org

1, 0, 3, 4, 16, 20, 67, 84, 231, 324, 735, 1026, 2265, 3086, 6199, 8880, 16564, 23390, 42378, 59496, 103588, 146376, 244278, 344186, 564013, 788168, 1255201, 1758400, 2738833, 3812242, 5846114, 8092092, 12200957, 16848156, 24991705, 34365176, 50392543
Offset: 0

Views

Author

Vaclav Kotesovec, May 23 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[PartitionsP[k]^2*x^k, {k, 0, nmax}] / Sum[PartitionsQ[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ 7^(3/2) * exp(Pi*sqrt(7*n/3)) / (768*n^2).

A366132 Number of unordered pairs of distinct strict integer partitions of n.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 6, 10, 15, 28, 45, 66, 105, 153, 231, 351, 496, 703, 1035, 1431, 2016, 2850, 3916, 5356, 7381, 10011, 13530, 18336, 24531, 32640, 43660, 57630, 75855, 100128, 130816, 170820, 222778, 288420, 372816, 481671, 618828, 793170, 1016025, 1295245
Offset: 0

Views

Author

Gus Wiseman, Oct 08 2023

Keywords

Examples

			The a(3) = 1 through a(8) = 15 pairs of strict partitions:
  {3,21}  {4,31}  {5,32}   {6,42}    {7,43}    {8,53}
                  {5,41}   {6,51}    {7,52}    {8,62}
                  {41,32}  {51,42}   {7,61}    {8,71}
                           {6,321}   {52,43}   {62,53}
                           {42,321}  {61,43}   {71,53}
                           {51,321}  {61,52}   {71,62}
                                     {7,421}   {8,431}
                                     {43,421}  {8,521}
                                     {52,421}  {53,431}
                                     {61,421}  {53,521}
                                               {62,431}
                                               {62,521}
                                               {71,431}
                                               {71,521}
                                               {521,431}
		

Crossrefs

For subsets instead of partitions we have A006516, non-disjoint A003462.
The disjoint case is A108796, non-strict A260669.
For non-strict partitions we have A355389.
The ordered disjoint case is A365662, non-strict A054440.
The ordered version is 2*a(n).
Including equal pairs or twins gives A366317, ordered A304990.
A000041 counts integer partitions, strict A000009.
A002219 and A237258 count partitions of 2n including a partition of n.
A161680 and A000217 count 2-subsets of {1..n}.

Programs

  • Mathematica
    Table[Length[Subsets[Select[IntegerPartitions[n],UnsameQ@@#&],{2}]],{n,0,30}]

Formula

a(n) = binomial(A000009(n),2).

A366317 Number of unordered pairs of strict integer partitions of n.

Original entry on oeis.org

1, 1, 1, 3, 3, 6, 10, 15, 21, 36, 55, 78, 120, 171, 253, 378, 528, 741, 1081, 1485, 2080, 2926, 4005, 5460, 7503, 10153, 13695, 18528, 24753, 32896, 43956, 57970, 76245, 100576, 131328, 171405, 223446, 289180, 373680, 482653, 619941, 794430, 1017451, 1296855
Offset: 0

Views

Author

Gus Wiseman, Oct 08 2023

Keywords

Examples

			The a(1) = 1 through a(7) = 15 unordered pairs of strict partitions:
  {1,1}  {2,2}  {3,3}    {4,4}    {5,5}    {6,6}      {7,7}
                {3,21}   {4,31}   {5,32}   {6,42}     {7,43}
                {21,21}  {31,31}  {5,41}   {6,51}     {7,52}
                                  {32,32}  {42,42}    {7,61}
                                  {32,41}  {42,51}    {43,43}
                                  {41,41}  {51,51}    {43,52}
                                           {6,321}    {43,61}
                                           {42,321}   {52,52}
                                           {51,321}   {52,61}
                                           {321,321}  {61,61}
                                                      {7,421}
                                                      {43,421}
                                                      {52,421}
                                                      {61,421}
                                                      {421,421}
		

Crossrefs

For non-strict partitions we have A086737.
The disjoint case is A108796, non-strict A260669.
The ordered version is A304990, disjoint A032302.
The ordered disjoint case is A365662.
Excluding constant pairs gives A366132.
A000041 counts integer partitions, strict A000009.
A002219 and A237258 count partitions of 2n including a partition of n.
A364272 counts sum-full strict partitions, sum-free A364349.

Programs

  • Mathematica
    Table[Length[Select[Tuples[Select[IntegerPartitions[n], UnsameQ@@#&],2],OrderedQ]],{n,0,30}]

Formula

a(n) = A000217(A000009(n)).
Composition of A000009 and A000217.

A370005 Number T(n,k) of ordered pairs of partitions of n with exactly k common parts; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 2, 1, 1, 4, 3, 1, 1, 12, 7, 4, 1, 1, 16, 19, 8, 4, 1, 1, 48, 35, 23, 9, 4, 1, 1, 60, 83, 43, 24, 9, 4, 1, 1, 148, 143, 106, 47, 25, 9, 4, 1, 1, 220, 291, 186, 115, 48, 25, 9, 4, 1, 1, 438, 511, 397, 210, 119, 49, 25, 9, 4, 1, 1, 618, 949, 697, 444, 219, 120, 49, 25, 9, 4, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Feb 07 2024

Keywords

Examples

			T(4,0) = 12: (1111,22), (1111,4), (211,4), (22,1111), (22,31), (22,4), (31,22), (31,4), (4,1111), (4,211), (4,22), (4,31).
T(4,1) = 7: (1111,31), (211,22), (211,31), (22,211), (31,1111), (31,211), (4,4).
T(4,2) = 4: (1111,211), (211,1111), (22,22), (31,31).
T(4,3) = 1: (211,211).
T(4,4) = 1: (1111,1111).
Triangle T(n,k) begins:
    1;
    0,   1;
    2,   1,   1;
    4,   3,   1,   1;
   12,   7,   4,   1,   1;
   16,  19,   8,   4,   1,  1;
   48,  35,  23,   9,   4,  1,  1;
   60,  83,  43,  24,   9,  4,  1, 1;
  148, 143, 106,  47,  25,  9,  4, 1, 1;
  220, 291, 186, 115,  48, 25,  9, 4, 1, 1;
  438, 511, 397, 210, 119, 49, 25, 9, 4, 1, 1;
  ...
		

Crossrefs

Column k=0 gives A054440.
Row sums and T(2n,n) give A001255.

Programs

  • Maple
    b:= proc(n, m, i) option remember; `if`(m=0, 1, `if`(i<1, 0,
          add(add(expand(b(sort([n-i*j, m-i*h])[], i-1)*
           x^min(j, h)), h=0..m/i), j=0..n/i)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$3)):
    seq(T(n), n=0..12);

A304987 G.f.: Sum_{k>=0} A000041(k) * x^k / Sum_{k>=0} A000009(k)^2 * x^k.

Original entry on oeis.org

1, 0, 1, -2, 2, -6, 3, -16, 17, -34, 47, -78, 153, -178, 373, -530, 954, -1410, 2280, -3896, 5908, -9988, 15170, -25908, 40659, -65136, 105967, -169056, 276483, -435624, 712052, -1139814, 1839535, -2955466, 4745201, -7689672, 12303439, -19866340, 31904000
Offset: 0

Views

Author

Vaclav Kotesovec, May 23 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[PartitionsP[k]*x^k, {k, 0, nmax}] / Sum[PartitionsQ[k]^2*x^k, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (-1)^n * c * d^n, where d = 1.6096199212376592810929072080593393678131347423108390218672748044914523428584..., c = 0.4455996319406557616008349987776746416976798533740571426884585957313974660...

A304989 G.f.: Sum_{k>=0} A000041(k)^2 * x^k / Sum_{k>=0} A000009(k)^2 * x^k.

Original entry on oeis.org

1, 0, 3, 2, 16, 10, 59, 32, 187, 90, 519, 152, 1439, 164, 3525, -246, 8904, -2500, 21748, -10836, 53918, -36508, 131424, -115266, 328703, -336608, 812615, -957464, 2046225, -2634166, 5152190, -7145682, 13121677, -19039178, 33473773, -50395004, 86035125
Offset: 0

Views

Author

Vaclav Kotesovec, May 23 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[PartitionsP[k]^2*x^k, {k, 0, nmax}] / Sum[PartitionsQ[k]^2*x^k, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (-1)^n * c * d^n, where d = 1.6096199212376592810929072080593393678131347423108390218672748044914523428584..., c = 3.049014588253509415528984781833089943634060493523166258285691300445092167...
Previous Showing 11-17 of 17 results.