A177986 Numbers n such that quartic curve y^2=x^4+n have integral points.
1, 3, 4, 8, 9, 15, 16, 19, 20, 24, 25, 28, 33, 35, 36, 40, 48, 49, 51, 63, 64, 65, 68, 73, 80, 81, 84, 99, 100, 104
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
104 does not belong to this sequence because 27^2 = 5^4 + 104.
For n=2, b(n)=5, a(n)=225. For n=5, b(n)=90, a(n)= 16769025. For n = 3, A006451(n) = 15. Therefore, A000217(A006451(n)) = A000217(15) = 120 and (A000217(A006451(n)))^2 = (A000217(15))^2 = (120)^2 = 14400.
restart: bm2:=-1: bm1:=0: bp1:=2: bp2:=5: print ('0,0','1,9','2,225'); for n from 3 to 1000 do b:= 8*sqrt((bp1^2+bp1)/2+1)+bm2; a:=(b*(b+1)/2)^2; print(n,a); bm2:=bm1; bm1:=bp1; bp1:=bp2; bp2:=b; end do:
diop(n,m) = {f=0; for(p=1,m, f=0; for(x=1,n, y=x*x*x+p; if(issquare(y),f=1); ); if(f==0,print1(p" ")) ) }
m=1681;cm=Floor[m^(1/3)];sm=Floor[Sqrt[m]];s=Range[0,sm]^2;c=Range[0,cm]^3;Sort[Join[s,c]] (* James C. McMahon, Dec 20 2024 *)
from math import isqrt from sympy import integer_nthroot def A125643(n): if n <= 4: return n-1>>1 def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n-2+x-integer_nthroot(x,3)[0]-isqrt(x) return bisection(f,n-2,n-2) # Chai Wah Wu, Oct 14 2024
IntegralQuarticPoints([1,0,0,0,-81]);
IntegralQuarticPoints([1,0,0,0,-79]);
For n=12, the "min |x|" solution is 2^2 = (-2)^3+12, hence xy(12) = [-2,2] and a(12) = -2; for n=18, it is 19^2 = 7^3 + 18, hence xy(18) = [7,19] and a(18) = 7.
A081119 = Cases[Import["https://oeis.org/A081119/b081119.txt", "Table"], {, }][[All, 2]]; r[n_, x_] := Reduce[y >= 0 && y^2 == x^3 + n, y, Integers]; xy[n_] := If[A081119[[n]] == 0, {0, 0}, For[x = 0, True, x++, rn = r[n, x]; If[rn =!= False, Return[{x, y} /. ToRules[rn]]; Break[]]; rn = r[n, -x]; If[rn =!= False, Return[{-x, y} /. ToRules[rn]]; Break[]]]]; a[n_] := xy[n][[1]]; a /@ Range[120]
For n=12, the "min |x|" solution is 2^2 = (-2)^3+12, hence xy(12) = [-2,2] and a(12) = 2; for n=18, it is 19^2 = 7^3 + 18, hence xy(18) = [7,19] and a(18) = 19.
A081119 = Cases[Import["https://oeis.org/A081119/b081119.txt", "Table"], {, }][[All, 2]]; r[n_, x_] := Reduce[y >= 0 && y^2 == x^3 + n, y, Integers]; xy[n_] := If[A081119[[n]] == 0, {0, 0}, For[x = 0, True, x++, rn = r[n, x]; If[rn =!= False, Return[{x, y} /. ToRules[rn]]; Break[]]; rn = r[n, -x]; If[rn =!= False, Return[{-x, y} /. ToRules[rn]]; Break[]]]]; a[n_] := xy[n][[2]]; a /@ Range[120]
Comments